Cho \(A=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
a) Tìm a để A xđ
b) Tìm a để A>2
c) Tìm a để A=5
Hepl me!!
Thanks!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐK: \(a\ge0;\) a khác 4
b,\(A=\frac{a+3\sqrt{a}+2+2a-4\sqrt{a}-5\sqrt{a}-2}{\left(\sqrt{a}-2\right)\cdot\left(\sqrt{a}+2\right)}=\frac{3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\cdot\left(\sqrt{a}-2\right)}=\frac{3\sqrt{a}}{\sqrt{a}+2}\)
c, để A= 2 KHI \(\frac{3\sqrt{a}}{\sqrt{a}+2}=2\)
<=>\(3\sqrt{a}=2\sqrt{a}+4\)
<=>\(\sqrt{a}=4\)
<=>a=16
tick nha
a) \(ĐKXĐ:x\ne4;x\ne9\)
b) \(A=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{-\sqrt{x}+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
c) Ta có: \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) (ĐK: x thuộc Z)
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 |
x | 2 | \(\sqrt{2}\) | \(\sqrt{5}\) | \(\sqrt{1}\) | \(\sqrt{7}\) | \(\varnothing\) |
Vậy để A thuộc Z khi x = {2;\(\sqrt{2};\sqrt{5};\sqrt{1};\sqrt{7}\) }
1)đặt nhân tử chung quy đồng là xong
2)phân tích x+2cănx-3=(1-cănx)(3+cănx)
3)2a+căn a đặt căn a ra r rút gọn
a. ĐK \(\hept{\begin{cases}a\ge0\\a\ne4\\a\ne9\end{cases}}\)
P=\(\frac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\frac{2\sqrt{a}-9-a+9+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)
b. P = \(\frac{\sqrt{a}+1}{\sqrt{a}-3}=1+\frac{4}{\sqrt{a}-3}\)
P nguyên \(\sqrt{a}-3\inƯ\left(4\right)\Rightarrow\sqrt{a}-3\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow\sqrt{a}\in\left\{1;2;4;5;7\right\}\Rightarrow a\in\left\{1;4;16;25;49\right\}\)
c. \(P< 1\Rightarrow P-1< 0\Rightarrow\frac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\Rightarrow\frac{4}{\sqrt{a}-3}< 0\)
\(\Rightarrow0\le a< 9\)và \(a\ne4\)
a) ĐKXĐ :
\(\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)
b) Với \(a\ge0\) và \(a\ne4\)
\(A=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)
Để A > 2
thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}>2\)
Ta có :
\(\frac{\sqrt{a}-4}{\sqrt{a}-2}-2\)
\(=\frac{\sqrt{a}-4-2\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)
\(=\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\)
\(\)\(=\frac{-\sqrt{a}}{\sqrt{a}-2}\)
+) \(-\sqrt{a}< 0\forall a\) \(\Rightarrow a>0\)
+) \(\sqrt{a}-2< 0\) \(\Leftrightarrow a< 4\)
Vậy để A > 2 thì 0 < a < 4
c) Để A = 5
thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}=5\)
\(\frac{\left(\sqrt{a}-4\right)-5\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)}=0\)
\(\frac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}=0\)
\(\Rightarrow-4\sqrt{a}+6=0\)
\(\Rightarrow a=\frac{9}{4}\)( TMĐKXĐ )
Vậy để A = 5 thì a = 9/4
a, A xđ <=> \(\hept{\begin{cases}\sqrt{a}+3\ne0\\a+\sqrt{a}-6\ne0\\2-\sqrt{a}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne2\\a\ne4\end{cases}};a\ne-3\)-3
b, rút gọn: A=\(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)để A> 2 <=> \(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)>2 <=> 1+\(\frac{-2}{\sqrt{a}-2}\)>2 <=> \(\frac{\sqrt{a}}{2-\sqrt{a}}\)>0
mà a\(\ge\)0 <=> \(\sqrt{a}\ge0\)=> \(2-\sqrt{a}\)>0 <=> a<4
kết hợp với điều kiện, ta được: \(0\le a< 4;a\ne2\)
c, để A = 5 thì \(\frac{-2}{\sqrt{a}-2}\)+1=5
<=> \(\frac{-2}{\sqrt{a}-2}\)=4
<=> \(a=\frac{9}{4}\)(t/m)
KL..............