Cho đương tròn (O) dây cung AB không đi qua tâm và I là trung điểm của dây AB. Trên tia đía của dây AB lấy điểm M khác A, vẽ 2 tiếp tuyến MC và MD đến (O) (tiếp điểm C thuộc cung nhỏ AB, tiếp điểm D thuộc cung lớn AB)
a) CM: OIMD nôi tiếp đường tròn
b) \(MD^2=MA.MD\)
c) Đường thẳng OI cắt cung nhỏ AB tại N, giao điểm của 2 đường thẳng DN và MB là E. CM: tam giác MCA cân tại M
d) đường thẳng ON cắt CD tại F. CM: \(\frac{1}{OI.OF}+\frac{1}{ME^2}=\frac{4}{CD^2}\)