K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2021

Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.

Không có mô tả.

7 tháng 6 2021

tiếp câu b. 

23 tháng 7 2020

a) xét tam giác MBC có \(\widehat{MBC}=\widehat{MCB}\)=> tam giác MBC cân tại M, HE _|_BC

=> E là trung điểm của BC

tam giác EMC có EO là phân giác \(\widehat{MEC}\)

=> \(\frac{MD}{CD}=\frac{ME}{EC}=\frac{3}{4}\)

\(ME=\frac{3}{4}CE\)

\(ME^2+CE^2=MC^2\Rightarrow\frac{9}{16}CE^2+CE^2=15^2\)

\(\Rightarrow\frac{25}{16}CE^2=15^2\Rightarrow CE=12\Rightarrow HE=9\)

b) tam giác ABM và tam giác ACB có 

\(\widehat{BAC}=90^o\)là góc chung

\(\widehat{ABM}=\widehat{ACB}\left(gt\right)\)

=> tam giác ABM ~ tam giác ACB (g.g)

=> \(\frac{AB}{AC}=\frac{AM}{AB}\Rightarrow AB^2=AC\cdot AM\)

21 tháng 9 2020

a) Ta có:

\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{BCA}=180-90-60=30\)

Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)

Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)

\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)

Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)

\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)

\(\Rightarrow\widehat{BFC}=60\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều

21 tháng 9 2020

a) Xét ΔABC∆ABC vuông tại AA

ˆABC=60oABC^=60o

⇒ACB=30o⇒ACB=30o

Ta có: BEBE là phân giác của ˆBB^

⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o

⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o

Xét ΔCBF∆CBF vuông tại CC có:

ˆCBF=30oCBF^=30o

⇒ˆCFB=60o⇒CFB^=60o

Xét ΔCEF∆CEF có:

ˆFEC=ˆCFB=60oFEC^=CFB^=60o

Do đó ΔCEG∆CEG đều

b) Sửa đề: ABCDABCD là hình thang cân

Ta có:

ˆBAC=ˆBDC=90oBAC^=BDC^=90o

Do đó ABCDABCD là tứ giác nội tiếp

⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o

Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o

nên ˆABD=ˆDBCABD^=DBC^

⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD

Mặt khác: ΔDBC∆DBC vuông tại DD có:

ˆDBC=30oDBC^=30o

⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^

Do đó ABCDABCD là hình thang cân

8 tháng 5 2022

a. Vì tam giác ABC cân tại A

=> AB = AC (1)

   Bx ⊥ BA  => góc ABx = 90o 

   Cy ⊥ CA  => góc ACy = 90o

  Xét tam giác ADB và tam giác ADC:

   AD chung

   góc ABx = góc ACy = 90o (cmt)

   AB = AC (cmt)

=> tam giác ADB = tam giác ADC (ch - cgv) (đpcm)

b. Vì tam giác ADB = tam giác ADC (cmt)

=> DB = DC (2)

Từ (1) và (2) suy ra

A; D ∈ đường trung trực của BC

=> AD là đường trung trực của BC (đpcm)

11 tháng 3 2023

bạn ơi cho mình xin hình đc ko

 

 

Bài 2: 

a: \(\widehat{ABE}=\widehat{CBE}=\dfrac{\widehat{ABC}}{2}=\dfrac{60^0}{2}=30^0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{CFE}=60^0\\\widehat{AEB}=\widehat{CEF}=60^0\end{matrix}\right.\)

=>ΔCFE đều

b: Xét tứ giác ABCD có 

\(\widehat{BAC}=\widehat{BDC}=90^0\)

Do đó: ABCD là tứ giác nội tiếp