K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng hằng đẳng thức : \(a^2-b^2+\left(a-b\right)\left(a+b\right)\)

Ta có ; \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left[\left(a^2+2a\right)+3\right]\left[\left(a^2+2a\right)-3\right]\)

\(=\left(a^2+2a\right)^2-3^2\)

\(=\left(a^2+2a\right)^2-9\)

a,hđt số 3 = \(\left(a^2+2a\right)^2-9\) 

b,hđt số 3=\(\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)(đổi dấu làm ngoặc khi trước nó là dấu trừ)=\(x^2-\left(y-6\right)^2\)

a) \(\left(a^2+2a+3\right)\left(a^2+2a-3\right)\)

\(=\left(a^2+2a\right)^2+3.\left(-3\right)\)

\(=\left(a^2+2a\right)^2-9\)

b) \(\left(x-y+6\right)\left(x+y-6\right)\)

\(=\left[x-\left(y-6\right)\right]\left[x+\left(y-6\right)\right]\)

\(=x^2-\left(y-6\right)^2\)

 

28 tháng 1 2018

a) A = 1                          b) B = -2.

23 tháng 9 2020

(a2+2a+3)(a2-2a+3)=a4+2a2+9

13 tháng 5 2022

Ta có \(A\left(1\right)=B\left(-2\right)\Leftrightarrow12+2a+a^2=8-\left|2a+3\right|\left(-2\right)+a^2\)

\(\Leftrightarrow4+2a=2\left|2a+3\right|\)

đk a >= -2 

\(\left[{}\begin{matrix}4a+6=4+2a\\4a+6=-2a-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-1\left(tm\right)\\a=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

4 tháng 5 2019

23 tháng 10 2018

Ta có 

Ta có 

Áp dụng bất đẳng thức Bunhiacopxky, ta có 

Do đó 

Dấu "x" xảy ra 

Chọn C.

Ta thấy (1) là hình tròn tâm 

Ta có  Xem đây là phương trình đường thẳng.

Để đường thẳng và hình tròn có điểm chung 

 

HQ
Hà Quang Minh
Giáo viên
20 tháng 8 2023

\(a,\left(2a-3\right)\left(a+1\right)+\left(a^2+6a+9\right):\left(a+3\right)\\ =2a^2-a-3+\left(a+3\right)^2:\left(a+3\right)\\ =2a^2-a-3+a+3\\ =2a^2\\ b,\left(3x-5y\right)\left(-xy\right)^2-3x^2y^2+4x^2y^3\\ =3x^3y^2-5x^2y^3-3x^2y^2+4x^2y^3\\ =3x^3y^2-3x^2y^2-x^2y^3\\ c,x\left(x-2\right)^2-\left(x+2\right)\left(x^2-2x+4\right)+4x^2\\ =x^3-4x^2+4x-x^3-8+4x^2\\ =4x-8\)

c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4-2a^3b+2ab^3-b^4\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)

\(=\left(a-b\right)^3\cdot\left(a+b\right)\)