cho a,b,c là độ dài 3 cạnh tam giác ABC. TÌm GTLN của
\(P=\sqrt{1-\frac{a}{b+c}}+\sqrt{1-\frac{b}{a+c}}+\sqrt{1-\frac{c}{a+b}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
Giải
Áp dụng BĐT Cauchy ta có:
\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)
Tương tự ta cũng có: \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)
Cộng vế theo vế các BĐT trên với nhau ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2>1\) (Đpcm)
Do a, b, c là 3 cạnh của tam giác ABC nên a, b, c đều dương. Do đó cả 2 vế đều dương.
Lập phương mỗi vế, ta được phương trình mới tương đương với phương trình đã cho:
\(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 8\cdot4=32\left(1\right)\)
Ta có \(\frac{a^3}{b^3+c^3}< \frac{2a^3}{a^3+b^3+c^3}\);\(\frac{b^3}{a^3+c^3}< \frac{2b^3}{a^3+b^3+c^3}\)và \(\frac{c^3}{a^3+b^3}< \frac{2c^3}{a^3+b^3+c^3}\)
Do đó \(\frac{a^3}{b^3+c^3}+\frac{b^3}{c^3+a^3}+\frac{c^3}{a^3+b^3}< 2< 32\)
Vì vậy bất đẳng thức (1) là đúng, nên bất đẳng thức đã cho là đúng
Ta có: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^2-\frac{3}{4}\left(a+b\right)^2.\left(a+b\right)=\frac{1}{4}\left(a+b\right)^3\)
\(\Rightarrow\frac{c}{\sqrt[3]{a^3+b^3}}\le\sqrt[3]{4}.\frac{c}{a+b}\)
Tương tự rồi cộng theo vế 3 BĐT trên ta có đpcm
A = \(\sqrt{1-\frac{a}{b+c}}+\sqrt{1-\frac{b}{a+c}}+\sqrt{1-\frac{a}{b+c}}\)
DO A,,B,C LÀ 3 CẠNH CỦA TAM GIÁC
=> A < B+C , B<A+C , C<A+B
=> \(\frac{a}{b+c},\frac{b}{a+c},\frac{c}{a+b}< 1\)
ÁP DỤNG BẤT ĐẲNG THỨC CÔ SI CHO 2 SỐ NGUYÊN KHÔNG ÂM
=> A <\(\frac{1+1-\frac{a}{b+c}}{2}+\frac{1+1-\frac{b}{a+c}}{2}+\frac{1+1-\frac{c}{a+b}}{2}\)
= \(\frac{8-\frac{a}{b+c}-\frac{c}{a+b}-\frac{b}{a+c}}{2}\)
TA TÍNH ĐƯỢC GIÁ TRỊ NHỎ NHẤT CỦA \(\frac{a}{b+c}+\frac{c}{a+b}+\frac{b}{a+c}\)
=> MAX A
a) 9x2 - 36
=(3x)2-62
=(3x-6)(3x+6)
=4(x-3)(x+3)
b) 2x3y-4x2y2+2xy3
=2xy(x2-2xy+y2)
=2xy(x-y)2
c) ab - b2-a+b
=ab-a-b2+b
=(ab-a)-(b2-b)
=a(b-1)-b(b-1)
=(b-1)(a-b)
P/s đùng để ý đến câu trả lời của mình
Áp dụng BĐT Cauchy-Schwarz và Nesbitt ta có:
\(P\le\sqrt{\left(1+1+1\right)\left(3-\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\right)}\)
\(\le\sqrt{\left(1+1+1\right)\left(3-\frac{3}{2}\right)}=\frac{3\sqrt{2}}{2}\)
rõ đi bạn mình không hiểu lắm