(x^2-9)^2-9(x-3)^2=0
Giúp mình với
Cảm ơn trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow x^2-2x-x^2+5x=6\\ \Leftrightarrow3x=6\\ \Leftrightarrow x=2\)
\(b,\Leftrightarrow x^2-6x+9-x+9=0\\ \Leftrightarrow x^2-7x+18=0\\ \Leftrightarrow\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{23}{4}=0\\ \Leftrightarrow\left(x-\dfrac{7}{2}\right)^2+\dfrac{23}{4}=0\left(vôlí\right)\)
a, \(\left(x^2-9\right)^2-\left(x-3\right)\left(x+3\right)\left(x^2+9\right)=\left(x^2-9\right)^2-\left(x^2-9\right)\left(x^2+9\right)\)
\(=x^4-18x^2+81-x^4+81=-18x^2+162\)
b, \(\left(x^2+x-3\right)\left(x^2-x+3\right)=\left[x^4-\left(x-3\right)^2\right]\)
\(=x^4-x^2+6x-9\)
Ta có: \(\left(1-x\right)^2+\left(x-x^2\right)+3=0\)
\(\Leftrightarrow x^2-2x+1+x-x^2+3=0\)
\(\Leftrightarrow4-x=0\)
hay x=4
Vậy: S={4}
$⇔x^2-2x+1+x-x^2+3=0$
$⇔-x=-4$
$⇔x=4$
Vậy phương trình đã cho có tập nghiệm S={4}
giải giúp mik với a) 2^x+1 =64
b) 570-x: 3 và 17<x<20
c) (4x-9)-(x+111)=0
giúp mik với nha mik cần gấp
\(a,2^{x+1}=64\\ \Rightarrow a,2^{x+1}=2^6\\ \Rightarrow x+1=6\\ \Rightarrow x=5\)
\(b,x=18\)
\(c,\left(4x-9\right)-\left(x+111\right)=0\\ \Rightarrow4x-9-x-111=0\\ \Rightarrow3x-120=0\\ \Rightarrow3x=120\\ \Rightarrow x=40\)
a, 3 - 2 | 5x - 4 | = -11
2|5x - 4| = 14
|5x - 4| = 7
Th1: 5x -4 =7
5x = 11
x= 11/5
Th2:
5x -4 =-7
5x = -3
x= -3/5
a) => 2/5x-4/=14
=> /5x-4/=7
=> 5x-4=7 hoac 5x-4=-7
x=11/5 x=-3/5
\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)
Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)
Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)
Bảng xét dấu:
x \(-\infty\) -3 1 2 \(+\infty\)
\(x-2\) - | - | - 0 +
\(x^2+2x-3\) + 0 - 0 + | +
\(f\left(x\right)\) - 0 + 0 - 0 +
Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)
\(b)\dfrac{x^2-9}{-x+5}< 0.\)
Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)
Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)
\(-x+5=0.\Leftrightarrow x=5.\)
Bảng xét dấu:
x \(-\infty\) -3 3 5 \(+\infty\)
\(x^2-9\) + 0 - 0 + | +
\(-x+5\) + | + | + 0 -
\(g\left(x\right)\) + 0 - 0 + || -
Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)
\(\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)
\(< =>\left(x^2-9\right)^2-\left[3\left(x-3\right)\right]^2=0\)
\(< =>\left(x^2-9\right)^2-\left(3x-9\right)^2=0\)
\(< =>\left(x^2-9+3x-9\right)\left(x^2-9-3x+9\right)=0\)
\(< =>\left(x^2+3x-18\right)\left(x^2-3x\right)=0\)
\(=>\left[{}\begin{matrix}x^2+3x-18=0\\x^2-3x=0\end{matrix}\right.< =>\left[{}\begin{matrix}\left(x+6\right)\left(x-3\right)=0\\x\left(x-3\right)=0\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=-6\\x=3\\x=0\end{matrix}\right.\)
Nhanh đấy tốc độ đấy =))