Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:A. Tam giác cân B. Tam giác đều C. Tam giác vuông D. Tam giác vuông cânCâu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:A. 7cm B. 12,5cm C. 5cm D. Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại: A. Đỉnh A B. Đỉnh B C....
Đọc tiếp
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 21: Cho tam giác đều ABC độ dài cạnh là 6cm. Kẻ AH vuông góc với BC(H thuộc BC). Độ dài AH là:
A. cm B. 3cm C. cm D. cm
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu 24. Cho tam giác MNP cân tại M, . Khi đó,
A. B. C. D.
Câu 25 : Cho ABC= MNP biết thì:
A. MNP vuông tại P B. MNP vuông tại M
C. MNP vuông tại N D. ABC vuông tại A
Bn kiểm tra lại câu c ik cái j cắt đg thẳng d tại K vậy?
a) Xét \(\Delta ABM\)và \(\Delta ADM\)Có :
\(AB=AD\left(GT\right)\)(1)
\(\widehat{BAM}=\widehat{DAM}\)( Vì AM là tia phân giác) (2)
\(AM:\)Cạnh chung (3)
Từ (1) ; (2) và (3)
\(\Rightarrow\Delta ABM=\Delta ADM\left(c.g.c\right)\)
b)
Vì \(\Delta ABM=\Delta ADM\)( chứng minh ở câu a )
\(\Rightarrow AB=AD\)( Cặp cạnh tương ứng )
\(\Rightarrow\Delta BAD\)Cân
\(\Rightarrow\widehat{ABD}=\widehat{ADB}\)
Kẻ BD // HC
Ta có :
\(\widehat{ABD}=\widehat{BHC}\)( Vị trí đồng vị ) (1)
và \(\widehat{ADB}=\widehat{DCH}\)( Vị trí đồng vị ) (2)
Mà \(\widehat{ABD}=\widehat{ADB}\)( Chứng minh trên) (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\widehat{BHC}=\widehat{DCH}\)
\(\Rightarrow\Delta HAC\)Cân ( đpcm )
c) Bạn xem lại đề câu c nha .
d)
Vì \(\Delta ABM=\Delta ADM\)( chứng minh ở câu a )
\(\Rightarrow BM=DM\)( Cặp cạnh tương ứng )
Kẻ \(MI\perp AC\)
=> \(\widehat{IMN}+\widehat{C}=90\)
\(\Rightarrow\widehat{C}=90-\widehat{IMN}\)(1)
Ta có :
\(\widehat{MDC}=\widehat{MIC}+\widehat{IMD}\)
\(\Rightarrow\widehat{MDC}=90+\widehat{IMD}\)(2)
Từ (1) và (2)
\(\Rightarrow\widehat{MDC}>\widehat{C}\)
Xét \(\Delta DMN\)CÓ :
\(\widehat{MDN}>\widehat{C}\)(1)
\(\Rightarrow MN>MD\)( vì cạnh MN đối diện với góc lớn nhất trong tam giác ) (2)
Mà \(MD=MB\)( Chứng minh trên) (3)
Từ (1)(2) và (3)
\(\Rightarrow MC>MB\);