Cho phương trình 2*x2+2*(m+1)*x+m2+4*m+3=0.
Tìm m để phương trình có hai nghiệm x1; x2 sao cho biểu thức sau đạt giá trị lớn nhất A =\(|\) x1*x2 - 2*(x1+x2)\(|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay m=0 vào phương trình (1), ta được:
\(x^2-2\cdot\left(0-1\right)x+0^2-3m=0\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy: Khi m=0 thì S={0;-2}
a, x 2 − 2 ( m + 1 ) x + m 2 + m − 1 = 0 (1)
Với m = 0, phương trình (1) trở thành:
x 2 − 2 x − 1 = 0 Δ ' = 2 ; x 1 , 2 = 1 ± 2
Vậy với m = 2 thì nghiệm của phương trình (1) là x 1 , 2 = 1 ± 2
b) Δ ' = m + 2
Phương trình (1) có hai nghiệm phân biệt ⇔ m > − 2
Áp dụng hệ thức Vi-ét, ta có: x 1 + x 2 = 2 ( m + 1 ) x 1 x 2 = m 2 + m − 1
Do đó:
1 x 1 + 1 x 2 = 4 ⇔ x 1 + x 2 x 1 x 2 = 4 ⇔ 2 ( m + 1 ) m 2 + m − 1 = 4 ⇔ m 2 + m − 1 ≠ 0 m + 1 = 2 ( m 2 + m − 1 ) ⇔ m 2 + m − 1 ≠ 0 2 m 2 + m − 3 = 0 ⇔ m = 1 m = − 3 2
Kết hợp với điều kiện ⇒ m ∈ 1 ; − 3 2 là các giá trị cần tìm.
Phương trình (1) có 2 nghiệm x1; x2 ⇔ Δ ' = ( m + 1 ) 2 − m 2 ≥ 0 ⇔ 2 m + 1 ≥ 0 ⇔ m ≥ − 1 2
Theo định lý Viét ta có x 1 + x 2 = 2 m + 2 x 1 x 2 = m 2
Có ( 2 ) ⇔ x 1 2 − 2 x 1 m + m 2 + x 2 = m + 2 ⇔ x 1 ( x 1 − 2 m ) + m 2 + x 2 = m + 2
Thay x 1 − 2 m = 2 − x 2 ; m 2 = x 1 x 2 vào ta có x 1 ( 2 − x 2 ) + x 1 x 2 + x 2 = m + 2 ⇔ 2 x 1 + x 2 = m + 2
Ta có hệ x 1 + x 2 = 2 m + 2 2 x 1 + x 2 = m + 2 ⇔ x 1 = − m x 2 = 3 m + 2 ⇒ m 2 = x 1 x 2 = − m ( 3 m + 2 ) ⇒ 4 m 2 + 2 m = 0 ⇔ m = 0 m = − 1 2 (thỏa mãn)
+ Với m = 0: ( 1 ) ⇔ x 2 − 2 x = 0 ⇔ x 1 = 0 x 2 = 2 (thỏa mãn đề bài)
+ Với m = − 1 2 : ( 1 ) ⇔ x 2 − x + 1 4 = 0 ⇔ x 1 = x 2 = 1 2 (thỏa mãn đề bài)
Vậy m = 0 hoặc m = -1/2 là tất cả các giá trị m cần tìm.
a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)
\(=4m^2+8m+4-4m^2+8m+12\)
=16m+16
Để phương trình luôn có nghiệm thì 16m+16>=0
hay m>=-1
b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)
\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)
\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)
\(\Leftrightarrow m^2+14m-15=0\)
=>(m+15)(m-1)=0
=>m=1