K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\text{Δ}=\left(-6\right)^2-4\left(m+1\right)=-4m-4+36=-4m+32\)

Để phương trình có nghiệm thì -4m+32>=0

=>-4m>=-32

hay m<=8

b: Theo Vi-et,ta được:

\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+1\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)

\(\Leftrightarrow36-2\left(m+1\right)=20\)

=>2(m+1)=16

=>m+1=8

hay m=7(nhận)

 

26 tháng 5 2022

`a)` Ptr có nghiệm`<=>\Delta' >= 0`

                             `<=>(-3)^2-(m+1) >= 0`

                             `<=>9-m-1 >= 0<=>m <= 8`

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

`b)`Với `m <= 8`, áp dụng Viét có:`{(x_1+x_2=[-b]/a=6),(x_1.x_2=c/a=m+1):}`

Ta có:`x_1 ^2+x_2 ^2=20`

`<=>(x_1+x_2)^2-2x_1.x_2=20`

`<=>6^2-2(m+1)=20`

`<=>36-2m-2=20`

`<=>2m=14<=>m=7` (t/m)

a) Thay m=-2 vào phương trình, ta được:

\(x^2+4x+3=0\)

a=1; b=4; c=3

Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)

24 tháng 2 2021

a,phương trình có nghiệm

`<=>\Delta>=0`

`<=>4m^2-4(m^2-m+2)>=0`

`<=>4m^2-4m^2+4m-8>=0`

`<=>4m>=8`

`<=>m>=2`

b,Áp dụng định lý vi-ét ta có:

`x_1+x_2=-b/a=2m`

`x_1.x_2=c/a=-m^2-m+2`

4 tháng 4 2023

\(x^2-2\left(m-3\right)x+2m-8=0\left(1\right)\)

\(\Delta'=\left(m-3\right)^2-2m+8=m^2-8m+9+8=\left(m-4\right)^2+1>0\forall m\)

⇒ Phương trình hai nghiệm phân biệt

Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=2m-8\end{matrix}\right.\)

Có : \(x_1^2+x_2^2=52\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=52\)

\(\Leftrightarrow4\left(m-3\right)^2-2\left(2m-8\right)=52\)

\(\Leftrightarrow4m^2-24m+36-4m+16=52\)

\(\Leftrightarrow4m^2-28m=0\Leftrightarrow4m\left(m-7\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=7\end{matrix}\right.\)

Vậy...

NV
26 tháng 12 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+3m-2\right)=-m+3\)

a. Phương trình có nghiệm khi:

\(\Delta'\ge0\Rightarrow m\le3\)

b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3m-2\end{matrix}\right.\)

c.

\(x_1^2+x_2^2-x_1x_2=22\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=22\)

\(\Leftrightarrow4\left(m+1\right)^2-3\left(m^2+3m-2\right)=22\)

\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=4\left(loại\right)\\m=-3\end{matrix}\right.\)

15 tháng 4 2021

Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)

hay \(\left(2m+2\right)^2-4\left(2m+2\right)=4m^2+8m+4-8m-8=4m^2-4>0\)

\(\Leftrightarrow4m^2>4\Leftrightarrow m^2>1\Leftrightarrow\left(m-1\right)\left(m+1\right)>0\Leftrightarrow\hept{\begin{cases}m>1\\m>-1\end{cases}\Leftrightarrow m>1}\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=\left(2m+2\right)^2\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4m^2+8m+4\)

\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2\left(2m+2\right)=4m^2+8m+4-4m-4=4m^2-4m\)

Lại có : \(x_1^2+x_2^2=8\Rightarrow4m^2-4m-8=0\)

\(\Leftrightarrow4\left(m^2-m-2\right)=0\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\left(chon\right)\\m=-1\left(loai\right)\end{cases}}\)

15 tháng 4 2021

Để pt có hai nghiệm phân biệt thì Δ' > 0

<=> ( m + 1 )2 - 2m - 2 > 0

<=> m2 + 2m + 1 - 2m - 2 > 0

<=> m2 - 1 > 0 => m > 1 hoặc m < -1

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2m-2\\x_1x_2=\frac{c}{a}=2m+2\end{cases}}\)

Khi đó x12 + x22 = 8

<=> ( x1 + x2 )2 - 2x1x2 = 8

<=> 4m2 + 8m + 4 - 4m - 4 - 8 = 0

<=> 4m2 + 4m - 8 = 0

<=> m2 + m - 2 = 0

<=> ( m - 1 )( m + 2 ) = 0

<=> m = 1 ( loại ) hoặc m = -2 (tm)

Vậy ...

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải