Cách làm dạng toán tìm x để biểu thức A là số tự nhiên ???Giúp mình vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài đầu và bài cuối mk bt nhưng 2 bài còn lại mk ko hiểu cho lắm
Cho mk đầu bài 1 , 4 nhé
Học tốt
Nhớ t.i.c.k
#Vii
Lời giải:
a. Để A là số nguyên tố thì 1 trong 2 thừa số $x-2, x+4$ có giá trị bằng 1 và số còn lại là số nguyên tố.
Mà $x-2< x+4$ nên $x-2=1$
$\Rightarrow x=3$
Thay vào $A$ thì $A=7$ là snt (thỏa mãn)
b. Để $A<0\Leftrightarrow (x-2)(x+4)<0$
Điều này xảy ra khi $x-2,x+4$ trái dấu. Mà $x-2< x+4$ nên:
$x-2<0< x+4$
$\Rightarrow -4< x< 2$
$x$ nguyên nên $x=-3,-2,-1,0,1$
Nếu có 1 thừa số = 0 thì tích C cũng bằng 0 và là giá trị nhỏ nhất .
a > 29 để các thừa số đều là số tự nhiên nên chỉ xét thừa số
( a - 30 ) = 0
a - 30 = 0
a =30
mk nhanh nhất nha
Ta có: \(A=\dfrac{x}{\sqrt{y}}\) khi \(y=625\) và \(A< 0,2\)
Nên: \(\dfrac{x}{\sqrt{625}}< 0,2\)
\(\Leftrightarrow\dfrac{x}{\sqrt{25^2}}< 0,2\)
\(\Leftrightarrow\dfrac{x}{25}< 0,2\)
\(\Leftrightarrow x< 0,2\cdot25\)
\(\Leftrightarrow x< 5\)
Vậy khi \(y=625\) và \(A< 0,2\) khi và chỉ khi \(x< 5\)
\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)
\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)
Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT
\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)
- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)
Vậy \(x=1\)