K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2018

Ta có: \(4\left(5a+b\right)-5\left(4a-3b\right)\)

         \(=20a+4b-20a+15b\)

           \(=19b\) chia hết cho 19

Mà   \(5a+b\) chia hết cho 19 =>  \(4a-3b\) chia hết cho 19.

2 tháng 8 2018

1/

4a-3b chaia hết cho 19 => 6(4a-3b)=24a-18b chia hết cho 19

24a-18b-(5a+b)=19a-19b=19(a-b) chia hết cho 19 mà 24a-18b chia hết cho 19 nên 5a+b chia hết cho 19

2/

4a+3b chia hết cho 13 => 5(4a+3b)=20a+15b chia hết cho 13

20a+15b-(7a+2b)=13a+13b=13(a+b) chia hết cho 13 mà 20a+15b chia hết cho 13 nến 7a+2b cũng chia hết cho 13

1 tháng 8 2018

ta có : \(4a-3b⋮19\Leftrightarrow20a-15b⋮19\Leftrightarrow4\left(5a+b\right)-19b⋮19\)

\(\Rightarrow5a+b⋮19\left(đpcm\right)\)

bài còn lại lm tương tự nha

1 tháng 8 2018

2. \(4a+3b⋮13\Leftrightarrow7\left(4a+3b\right)⋮13\Leftrightarrow28a+21b⋮13\Leftrightarrow28a+21b-13b⋮13\Leftrightarrow28a+8b⋮13\Leftrightarrow4\left(7a+2b\right)⋮13\Leftrightarrow7a+2b⋮13\)

Vậy \(4a+3b⋮13\Leftrightarrow7a+2b⋮13\)

26 tháng 1 2016

a là bội của b;b là bội cuẩ nên a chia hết cho b; b chia hết cho a hay a=qb;b=pa với q;p là số nguyên

Ta có: a=qb=q(ap)=(qp)a nên pq =1 và q=p=1 hay q=p=-1

Từ đó ta có diều cần chứng minh

có thể giải theo cách đơn giản như sau:

Giải:

Vì a là bội của b nên ta có:

* a= m.b(m thuộc Z)

Vì b là bội của a nên ta có:

** b=n.a( n thuộc Z)

Kết hợp * và ** ta được:

a:m=n.a

\(\Rightarrow\)1:m=n mà n thuộc Z do đó suy ra m=1 hoặc m=-1

Vậy:-Khi m=1 ta được a=b

        Khi m=-1 ta được a=-b

Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3

 \(\Rightarrow\)p có dạng 3k+1 và 3k+2

+) Với p=3k+1

Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9

Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )

+) Với p=3k+2

Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )

             4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15

Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )

Vậy ...

_HT_

3 tháng 2 2022

em chịu

18 tháng 10 2016

3a+4b=3a+[3+1]b=3a+3b+b=3[a+b]+b 

vì 3[a+b] chia hết cho 19 nên b chia hết cho 19

4a+3b=a[3+1]+3b=3a+a+3b=3[a+b] +a

vì 3[a+b] chia hết cho 19 nên b chia hết cho 19

12 tháng 8 2019

những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé

9 tháng 8 2023

Ta đặt \(a^2+4b+3=k^2\) 

\(\Leftrightarrow k^2-a^2\equiv3\left[4\right]\)

Mà \(k^2,a^2\equiv0,1\left[4\right]\) nên \(k^2⋮4,a^2\equiv1\left[4\right]\) \(\Rightarrow k⋮2,a\equiv1\left[2\right]\)

Đặt \(k=2l,a=2c+1>b\), ta có \(\left(2c+1\right)^2+4b+3=4l^2\)

\(\Leftrightarrow4c^2+4c+4b+4=4l^2\)

\(\Leftrightarrow c^2+c+1+b=l^2\)

Nếu \(b< c\) thì \(c^2< c^2+c+1+b< c^2+2c+1=\left(c+1\right)^2\), vô lí.

Nếu \(c< b< 2c+1\) thì

\(\left(c+1\right)^2< c^2+c+1+b< c^2+4c+4=\left(c+2\right)^2\), cũng vô lí.

Do vậy, \(c=b\) hay \(a=2b+1\)

Từ đó \(b^2+4a+12=b^2+4\left(2b+1\right)+12\) \(=b^2+8b+16\) \(=\left(b+4\right)^2\) là SCP. Suy ra đpcm.

 

17 tháng 2 2015

huk mìk như pn thuj có 6 đề hsg đây nè

18 tháng 2 2015

Mình giải đc r ^^