Cho \(x=\frac{3}{\sqrt[3]{4}-\sqrt[3]{2}+1}\)
\(y=\frac{6}{4+\sqrt[3]{4}+\sqrt[3]{16}}\)
Cm x+y là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đật 3 cái mẫu bên VT lần lượt là x,y,z rồi áp dụng C-S dạng engel
Để dễ nhìn ta đặt \(\hept{\begin{cases}\sqrt{2x-3}=a\\\sqrt{y-2}=b\\\sqrt{3z-1}=c\end{cases}\left(a,b,c\ge0\right)}\)
Vậy BĐT đầu tương đương \(T=\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c\)
Áp dụng BĐT C-S dạng Engel ta có:
\(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}=\frac{1^2}{a}+\frac{2^2}{b}+\frac{4^2}{c}\ge\frac{\left(1+2+4\right)^2}{a+b+c}=\frac{49}{a+b+c}\)
Tiếp tục dùng AM-GM ta có: \(VT\ge\frac{49}{a+b+c}+\left(a+b+c\right)\ge2\sqrt{\frac{49}{a+b+c}\cdot\left(a+b+c\right)}=2\sqrt{49}=14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=1\\b=2\\c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}\)
Đặt \(a=\sqrt{2x-3}\) ; \(b=\sqrt{y-2}\) ; \(c=\sqrt{3z-1}\) (\(a,b,c>0\))
Ta có : \(\frac{1}{a}+\frac{4}{b}+\frac{16}{c}+a+b+c=14\)
\(\Leftrightarrow\left(\sqrt{2x-3}+\frac{1}{\sqrt{2x-3}}-2\right)+\left(\sqrt{y-2}+\frac{4}{\sqrt{y-2}}-4\right)+\left(\sqrt{3z-1}+\frac{16}{\sqrt{3z-1}}-8\right)=0\)
\(\Leftrightarrow\left[\frac{\left(2x-3\right)-2\sqrt{2x-3}+1}{\sqrt{2x-3}}\right]+\left[\frac{\left(y-2\right)-4\sqrt{y-2}+4}{\sqrt{y-2}}\right]+\left[\frac{\left(3z-1\right)-8\sqrt{3z-1}+16}{\sqrt{3z-1}}\right]=0\)
\(\Leftrightarrow\frac{\left(\sqrt{2x-3}-1\right)^2}{\sqrt{2x-3}}+\frac{\left(\sqrt{y-2}-2\right)^2}{\sqrt{y-2}}+\frac{\left(\sqrt{3z-1}-4\right)^2}{\sqrt{3z-1}}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2x-3}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{3z-1}-4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=\frac{17}{3}\end{cases}}}\)(TMĐK)
Vậy : \(\left(x;y;z\right)=\left(2;6;\frac{17}{3}\right)\)
Ta có: +) \(3=\left(\sqrt[3]{2}\right)^3+1^3=\left(\sqrt[3]{2}+1\right)\left(\sqrt[3]{4}-\sqrt[3]{2}+1\right)\Rightarrow\frac{1}{\sqrt[3]{4}-\sqrt[3]{2}+1}=\frac{\sqrt[3]{2}+1}{3}\)\(\Rightarrow\frac{3}{\sqrt[3]{4}-\sqrt[3]{2}+1}=\sqrt[3]{2}+1\)hay \(x=\sqrt[3]{2}+1\)
+) \(3=\left(\sqrt[3]{4}\right)^3-1^3=\left(\sqrt[3]{4}-1\right)\left(\sqrt[3]{16}+\sqrt[3]{4}+1\right)\)\(\Rightarrow\sqrt[3]{16}+\sqrt[3]{4}+1=\frac{3}{\sqrt[3]{4}-1}\Rightarrow4+\sqrt[3]{4}+\sqrt[3]{16}=\frac{3\sqrt[3]{4}}{\sqrt[3]{4}-1}\)\(\Rightarrow\frac{6}{4+\sqrt[3]{4}+\sqrt[3]{16}}=\frac{6\sqrt[3]{4}-6}{3\sqrt[3]{4}}=2-\frac{2}{\sqrt[3]{4}}=2-\sqrt[3]{2}\)hay \(y=2-\sqrt[3]{2}\)
Từ đó suy ra \(x+y=\sqrt[3]{2}+1+2-\sqrt[3]{2}=3\)là một số tự nhiên (đpcm)
Ta có: \(x=\frac{3\left(1+\sqrt[2]{2}\right)}{\left(\sqrt[3]{2^2}-\sqrt[3]{2}+1\right)\left(1+\sqrt[3]{2}\right)}=\frac{3\left(1+\sqrt[2]{2}\right)}{1+\left(\sqrt[3]{2}\right)^3}=1+\sqrt[2]{2}\)
\(y=\frac{6\left(2-\sqrt[3]{2}\right)}{\left(2^2+2\sqrt[3]{2}+\sqrt[3]{2^2}\right)\left(2-\sqrt[3]{2}\right)}=\frac{6\left(2-\sqrt[3]{2}\right)}{2^3-\left(\sqrt[3]{2}\right)^3}=2-\sqrt[3]{2}\)
Vậy x+y=1+\(\sqrt[3]{2}+2-\sqrt[3]{2}=3\)là 1 số tự
nhiên