Tính S = 3/2^3+3/3^3+...+3/399^3
Mình cần gấp mai thi rồi!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow2S=6+\frac{3}{1}+\frac{3}{2}+...+\frac{3}{2^8}\)
\(\Rightarrow2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)\)
\(\Rightarrow S=3-\frac{3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)
\(\Rightarrow\frac{1}{2}.S=\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\)
\(\Rightarrow S-\frac{1}{2}.S=\frac{1}{2}.S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}-\left(\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\right)\)
\(\Rightarrow\frac{1}{2}.S=3-\frac{3}{2^{10}}\)
\(\Rightarrow S=6-\frac{6}{2^{10}}\)
\(a,A=\left(x^2-x\right)\left(x^2-x-12\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)\\ A=\left(x^2-x\right)^2-12\left(x^2-x\right)+36-36\\ A=\left(x^2-x+6\right)^2-36\ge-36\\ A_{min}=-36\Leftrightarrow x^2-x+6=0\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\\ b,B=4x^4+4x^3+5x^2+4x+3\\ B=\left(4x^4+4x^3+x^2\right)+\left(x^2+4x+4\right)-1\\ B=x^2\left(2x+1\right)^2+\left(x+2\right)^2-1\ge-1\\ B_{min}=-1\Leftrightarrow\left\{{}\begin{matrix}x\left(2x+1\right)=0\\x+2=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy dấu \("="\) không xảy ra
3S=3-3^2+...-3^2022+3^2023
=>4S=3^2023+1
=>4S-3^2023=1
\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)
\(=1.120+3^5.120+...+3^{97}.120\)
\(=\left(1+3^5+...+3^{97}\right).120\)
\(\Rightarrow S⋮120\)
Vậy ........
Lời giải:
\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)
\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)
\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)
\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)
\(S=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3S=3^2+3^3+3^4+...+3^{101}\)
\(\Leftrightarrow3S-S=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Leftrightarrow2S=3^{101}-3\)
\(\Leftrightarrow S=\frac{3^{101}-3}{2}\)
Ta thấy : \(S=\frac{3^{101}-3}{2}=\frac{\left(3^4\right)^{25}.3-3}{2}=\frac{\overline{...1}.3-3}{2}=\frac{\overline{...3}-3}{2}=\frac{\overline{...0}}{2}=\overline{...0}\)
Vậy chữ số cuối cùng của S là 0
:~ mai chủ nhật mà bn