K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2019

\(\Rightarrow2S=6+\frac{3}{1}+\frac{3}{2}+...+\frac{3}{2^8}\)

\(\Rightarrow2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)\)

\(\Rightarrow S=3-\frac{3}{2^9}\)

7 tháng 5 2019

\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)

\(\Rightarrow\frac{1}{2}.S=\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\)

\(\Rightarrow S-\frac{1}{2}.S=\frac{1}{2}.S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}-\left(\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\right)\)

\(\Rightarrow\frac{1}{2}.S=3-\frac{3}{2^{10}}\)

\(\Rightarrow S=6-\frac{6}{2^{10}}\)

 

3S=3-3^2+...-3^2022+3^2023

=>4S=3^2023+1

=>4S-3^2023=1

3 tháng 1 2023

\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)

\(=1.120+3^5.120+...+3^{97}.120\)

\(=\left(1+3^5+...+3^{97}\right).120\)

\(\Rightarrow S⋮120\)

Vậy ........

AH
Akai Haruma
Giáo viên
9 tháng 5 2021

Lời giải:

\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)

\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)

\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)

\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)

\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)

\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)

5 tháng 7 2020

\(S=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3S=3^2+3^3+3^4+...+3^{101}\)

\(\Leftrightarrow3S-S=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Leftrightarrow2S=3^{101}-3\)

\(\Leftrightarrow S=\frac{3^{101}-3}{2}\)

Ta thấy : \(S=\frac{3^{101}-3}{2}=\frac{\left(3^4\right)^{25}.3-3}{2}=\frac{\overline{...1}.3-3}{2}=\frac{\overline{...3}-3}{2}=\frac{\overline{...0}}{2}=\overline{...0}\)

Vậy chữ số cuối cùng của S là 0

29 tháng 12 2020

ai trả lời nhanh nhất thì mình sẽ tim ❤❤❤ cho bạn ấy 

30 tháng 12 2020

S=1+3+3^2+3^3+...+3^10

3.S=3+3^2+3^3+3^4+...+3^11

3.S-S=(3+3^2+3^3+3^4+...+3^10)-(1+3+3^2+3^3+...+3^10

3.S-S=3+3^2+3^3+3^4+...+3^11-1-3-3^2-3^3-...-3^10

S=3^11-1

21 tháng 12 2017

\(3\left(2x+1\right)-19=14\)

\(3\left(2x+1\right)=33\)

\(2x+1=11\)

\(2x=10\)

\(x=5\)

21 tháng 12 2017

3.(2.x+1)-19=14

3.(2.x+1)-19=14+19

3.(2.x+1)-19=33

(2.x+1) =33:3

(2.x+1) = 11

2.x =11-1

2.x = 10

x = 10:2

x = 5

6 tháng 7 2018

A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)

A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)

A=3.(1-1/400)

A=3.399/400

A=1197/400

6 tháng 7 2018

A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)

A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)

A=3.(1-1/400)

A=3.399/400

A=1197/400

5 tháng 7 2018

Bài 1: Tính nhanh:

A = 3/1*2 + 3/2*3 + 3/3*4 + ... + 3/399*400

=>3A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/399*400

    3A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/399 - 1/400

    3A = 1 - 1/400

      3A = 400/400 - 1/400

      3A = 399/400

        A = 399/400 : 3

        A = 399/400 . 1/3

        A = 133/400.

Có gì ko hiểu bn ib mk nha.^^

5 tháng 7 2018

\(A=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{399.400}\)

\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)

\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)

\(A=3.\left(1-\frac{1}{400}\right)\)

\(A=3.\frac{399}{400}\)

\(A=\frac{1197}{400}\)

\(B=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{399.400}\)

\(B=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)

\(B=5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)

\(B=5.\left(1-\frac{1}{400}\right)\)

\(B=5.\frac{399}{400}\)

\(B=\frac{399}{80}\)

\(C=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\)

\(C=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\)

\(C=\frac{1}{5}-\frac{1}{151}\)

\(C=\frac{146}{755}\)

\(D=\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{149.151}\)

\(D=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\right)\)

\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\right)\)

\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{151}\right)\)

\(D=\frac{3}{2}.\frac{146}{755}\)

\(D=\frac{219}{755}\)

\(E=\frac{11}{1.3}+\frac{11}{3.5}+\frac{11}{5.7}+...+\frac{11}{99.101}\)

\(E=\frac{11}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(E=\frac{11}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(E=\frac{11}{2}.\left(1-\frac{1}{101}\right)\)

\(E=\frac{11}{2}.\frac{100}{101}\)

\(E=\frac{550}{101}\)

_Chúc bạn học tốt_