K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2018

Vì a/b < c/d (Với a,b,c,d thuộc N*)

=> ad<bc

=>  2018ad < 2018bc

=> 2018ad + cd < 2018bc +cd

=> (2018a + c).d < (2018b+d).c

=> 2018a +c / 2018b + d < c/d

13 tháng 12 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có

\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)

\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)

\(\Rightarrow VT=VP\)

Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)

13 tháng 12 2019

Ủa cho tớ hỏi: VT , VP là j vậy?

2 tháng 11 2018

với c=0=>a=0 đẳng thức đúng

với c khác 0 ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}}{c^{2018}}=\frac{b^{2018}}{d^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)

=>\(\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)

27 tháng 4 2019

\(\frac{a}{b}< \frac{c}{d}\)

\(ad< bc\)

\(2018ad< 2018bc\)

\(2018ad+cd< 2018bc+cd\)

\(\left(2018a+c\right)d< \left(2018b+d\right)c\)

\(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)

Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)

Ta có:a/b<c/d<=>a.d<b.c

<=>2018a.d<2018b.c

<=>2018a.d+c.d<2018b.c+d.c

<=>d(2018a+c)<c(2018b+d)

<=>2018a+c/2018b+d<c/d(dpcm)

Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)

\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)

\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))

Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)

13 tháng 8 2017

a. Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\left(\frac{a-c}{b-d}\right)\left(\frac{a-c}{b-d}\right)=\left(\frac{a-c}{b-d}\right)^2\)

\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)(ĐPCM)

13 tháng 8 2017

a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\) Đặt \(\frac{a}{c}=\frac{b}{d}=k\)

Áp dụng TCDSBN ta có :

\(k=\frac{a-b}{c-d}\)\(\Rightarrow k^2=\left(\frac{a-b}{c-d}\right)^2\)(1)

Ta lại có : \(k=\frac{a}{c};k=\frac{b}{d}\Rightarrow k^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)(2)

Từ (1) ; (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)(đpcm)

b ) Đề sai : điều cần cm là \(\frac{2017a-2018b}{2017c+2018d}=\frac{2017c-2018d}{2017a+2018b}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2007a}{2007c}=\frac{2008b}{2008c}=\frac{2007a+2008b}{2007c+2008d}=\frac{2007a-2008b}{2007c-2008d}\)

\(\Rightarrow\left(2007a+2008b\right)\left(2007c-200d\right)=\left(2007a-2008b\right)\left(2007c+2008d\right)\)

\(\Rightarrow\frac{2017a-2018b}{2017c+2018d}=\frac{2017c-2018d}{2017a+2018b}\)(đpcm)