K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

đầu tiên bạn tính 5c rồi lấy 2c - đi  nha

9 tháng 5 2018

nhầm lấy 5c -c

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

8 tháng 12 2016

A=(1+2010)+2010 mũ 2+2010 mũ 3 +...+2010 mũ 6 + 2010 mũ 7

A=2011+2010 mũ 2(1+2010)+...+2010 mũ 6(1+2010)

A=2011+2010 mũ 2.2011+...2010 mũ 6.2011

A=2011(1+2010+...+2010 mũ 6)chia hết cho 2011

26 tháng 11 2017

50+51+52+53+...+52010+52011

= 1+5+52+53+...+52010+52011

=(1+5)+(52+53)+...+(52010+52011)

= (1+5)+52(1+5)+...+52010(1+5)

= (1+5)(1+52+...+52010)

= 6.(1+52+...+52010) chia hết cho 6

=> đpcm

k mik nha

Số các số hạng là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

Vì 2010 chia hết cho 3 nên ta nhóm 3 số vào 1 nhóm.

Ta có: ( 3 mũ 1 + 3 mũ 2 + 3 mũ 3 ) + ( 3 mũ 4 + 3 mũ 5 + 3 mũ 6 ) +........+ ( 3 mũ 2008 + 3 mũ 2009 + 3 mũ 2010 )

3 mũ 1*(1+3+9)+3 mũ 4*(1+3+9)+........+3 mũ 2008*(1+3+9)

3 mũ 1*13 + 3 mũ 4*13  + .........+ 3 mũ 2008*13

(3 mũ 1+3 mũ 4+......+3 mũ 2008)*13

Vì 13 chia hết cho 13 nên ( 3 mũ 1+3 mũ 4+3 mũ 2008 ) chia hết cho 13 hay ( đẳng thức của đề bài cho ) chia hết cho 13.

5 tháng 10 2020

383+7383=

19 tháng 10 2023

Đặt \(A=5+5^2+5^3+5^4+...+5^{49}+5^{50}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)

\(=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{49}.\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{49}.6\)

\(=6.\left(5+5^3+...+5^{49}\right)⋮6\)

Vậy \(A⋮6\)

17 tháng 12 2023

Số số hạng của A:

98 - 1 + 1 = 98 (số)

Do 98 ⋮ 2 nên ta có thể nhóm các số hạng của A thành các nhóm mà mỗi nhóm có 2 số hạng như sau:

A = (5 + 5²) + (5³ + 5⁴) + ... + (5⁹⁷ + 5⁹⁸)

= 5.(1 + 5) + 5³.(1 + 5) + ... + 5⁹⁷.(1 + 5)

= 5.6 + 5³.6 + ... + 5⁹⁷.6

= 6.(5 + 5³ + ... + 5⁹⁷) ⋮ 6

Vậy A ⋮ 6

17 tháng 12 2023

A=(5+5^2)+(5^3+5^4)+...+(5^97+5^98)

A=5(1+5)+5^3(1+5)+...+5^97(1+5)

A=(5.6)+(5^3.6)+...+(5^97.6)

A=6.(5+5^3+...+5^97)

suy ra A⋮6

Suy ra A

23 tháng 10 2021

\(S=5+5^2+5^3+...+5^{1992}\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{1991}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{1991}.6=6\left(5+5^3+...+5^{1991}\right)⋮6\)