K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2018

p^2=x^2-2x+5

p^2=(x-1)^2+4

=>p^2 min=4

=>p min=2 <=>x=1

12 tháng 10 2015

sau khi bình pương và rút gọn biểu thức trong căn ta đc:

A2=2x2+10+2.\(\sqrt{\left(x^4\right)+6x^2+25}\)

vì x4+6x2+25>=25 với mọi x

nên .\(\sqrt{\left(x^4\right)+6x^2+25}\)>=5

=>2..\(\sqrt{\left(x^4\right)+6x^2+25}\)>=10

 

=>A2>=10+10=20

=>A>=\(\sqrt{20}\)

dấu = xảy ra khi x=0

vậy..

 

12 tháng 10 2015

\(\sqrt{20}\)  khi x = 0

1 tháng 9 2021

Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)

          \(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)

    \(\Rightarrow\)   \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)

Vậy GTNN của biểu thức là 4

2 tháng 9 2021

 

thế cho mik hỏi dấu = xảy ra khi nào?

sai nha bạn ơi

18 tháng 9 2023

a) \(A=\sqrt[]{x^2-2x+5}\)

\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)

\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)

mà \(\left(x+1\right)^2\ge0,\forall x\in R\)

\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)

Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)

Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)

b) \(B=5-\sqrt[]{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)

Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)

\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)

\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)

\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)

Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)

16 tháng 10 2017

\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

\(\sqrt{\left(x-1\right)^2+4}\ge2\)

\(\sqrt{x^2-2x+5}\ge2\)

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Bài 1:

$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$

$\Leftrightarrow x=4$

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Bài 2: $x-\sqrt{x}$

ĐKXĐ: $x\geq 0$

$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$

$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$

$\Leftrightarrow x=\frac{1}{4}$

 

5 tháng 12 2015

\(y=\sqrt{\left(1-x\right)^2+2^2}+\sqrt{\left(x+2\right)^2+1^2}\ge\sqrt{\left(1-x+x+2\right)^2+\left(2+1\right)^2}=3\sqrt{2}\)

Min y = \(3\sqrt{2}\) khi \(\frac{1-x}{2}=\frac{x+2}{1}\Leftrightarrow1-x=2x+4\Leftrightarrow3x=-3\Leftrightarrow x=-1\)

14 tháng 10 2018

Ta có BĐT \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

Áp dụng vào bài toán ta có

\(\sqrt{x^2+1}+\sqrt{x^2-2x+5}=\sqrt{x^2+1^2}+\sqrt{\left(1-x\right)^2+2^2}\)

\(\ge\sqrt{\left(x+1-x\right)^2+\left(1+2\right)^2}=\sqrt{10}\)

Dấu "=" xảy ra khi \(\frac{x}{1-x}=\frac{1}{2}\Rightarrow x=\frac{1}{3}\)