Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
Tính: \(M=\frac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=1+1.\sqrt[3]{2}+\sqrt[3]{2}^2=\dfrac{\sqrt[3]{2}^3-1^3}{\sqrt[3]{2}-1}=\dfrac{1}{\sqrt[3]{2}-1}\)
\(\Leftrightarrow\dfrac{1}{x}+1=\sqrt[3]{2}\)
\(\Leftrightarrow\left(x+1\right)^3=2x^3\Leftrightarrow x^3-3x^2-3x-1=0\).
Do đó \(M=\dfrac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
\(M=\dfrac{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(4x^2+8x+4\right)}-6}{\sqrt{\left(x^3-3x^2-3x-1\right)+\left(x^2-4x+4\right)}}\)
\(M=\dfrac{\sqrt{\left(2x+2\right)^2}-6}{\sqrt{\left(x-2\right)^2}}=\dfrac{2x+2-6}{x-2}=2\). (Do \(x>2\))
minh ghi nhầm, dấu căn dưới mẫu là bao trùm luôn -7x+3 nhen
\(x=1+\sqrt[3]{2}+\sqrt[3]{4}=\frac{1}{\sqrt[3]{2}-1}.\)
\(\Rightarrow\sqrt[3]{2}x=x+1\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
\(\Rightarrow\hept{\begin{cases}x^3+x^2+5x+3=4\left(x+1\right)^2\\x^3-2x^2-7x+3=\left(x-2\right)^2\end{cases}}\)
Khi đó:
\(P=\frac{2\left(x+1\right)-6}{x-2}=2\)(do x>0)
a/ Giải rồi
b/ ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{2x+3}+\sqrt{x+1}=t>0\)
\(\Rightarrow t^2=3x+4+2\sqrt{2x^2+5x+3}\) (1)
Pt trở thành:
\(t=t^2-6\Leftrightarrow t^2-t-6=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2x+3}+\sqrt{x+1}=3\)
\(\Leftrightarrow3x+4+2\sqrt{2x^2+5x+3}=9\)
\(\Leftrightarrow2\sqrt{2x^2+5x+3}=5-3x\left(x\le\frac{5}{3}\right)\)
\(\Leftrightarrow4\left(2x^2+5x+3\right)=\left(5-3x\right)^2\)
\(\Leftrightarrow...\)
e/ ĐKXD: \(x>0\)
\(5\left(\sqrt{x}+\frac{1}{2\sqrt{x}}\right)=2\left(x+\frac{1}{4x}\right)+4\)
Đặt \(\sqrt{x}+\frac{1}{2\sqrt{x}}=t\ge\sqrt{2}\)
\(\Rightarrow t^2=x+\frac{1}{4x}+1\)
Pt trở thành:
\(5t=2\left(t^2-1\right)+4\)
\(\Leftrightarrow2t^2-5t+2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=\frac{1}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x}+\frac{1}{2\sqrt{x}}=2\)
\(\Leftrightarrow2x-4\sqrt{x}+1=0\)
\(\Rightarrow\sqrt{x}=\frac{2\pm\sqrt{2}}{2}\)
\(\Rightarrow x=\frac{3\pm2\sqrt{2}}{2}\)
mình ghi nhầm, dấu căn dưới mẫu là bao trùm luôn -7x+3 nhen
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
\(x-1=\sqrt[3]{4}+\sqrt[3]{2}\)
\(\Rightarrow x^3-3x^2+3x-1=6+3\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Rightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)
\(\Rightarrow x^3-3x^2-3x-1=0\)
\(\Rightarrow x^3=3x^2+3x+1\)
\(P=\frac{\sqrt{3x^2+3x+1+x^2+5x+3}-6}{\sqrt{3x^2+3x+1-2x^2-7x+3}}=\frac{\sqrt{4\left(x+1\right)^2}-6}{\sqrt{\left(x-2\right)^2}}\)
\(=\frac{2x-4}{x-2}=2\)
@Vũ Minh Tuấn @Nguyễn Việt Lâm @Lê Thị Thục Hiền
\(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Leftrightarrow x-1=\sqrt[3]{2}+\sqrt[3]{4}\)
\(\Leftrightarrow\left(x-1\right)^3=\left(\sqrt[3]{2}+\sqrt[3]{4}\right)^3\)
\(\Leftrightarrow x^3-3x^2+3x-1=2+4+3\sqrt[3]{2.4}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1=6+6\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1=6+6\left(x-1\right)\)( vì \(x-1=\sqrt[3]{2}+\sqrt[3]{4}\))
\(\Leftrightarrow x^3-3x^2-3x-1=0\)
Ta có \(M=\frac{\sqrt{x^3+x^2+5x+3}-6}{\sqrt{x^3-2x^2-7x+3}}\)
\(=\frac{\sqrt{x^3-3x^2-3x-1+4x^2+8x+4}-6}{\sqrt{x^3-3x^2-3x-1+x^2-4x+4}}\)
\(=\frac{\sqrt{4x^2+8x+4}-6}{\sqrt{x^2-4x+4}}\)( vì \(x^3-3x^2-3x-1=0\))
\(=\frac{\sqrt{\left(2x+2\right)^2}-6}{\sqrt{\left(x-2\right)^2}}\)
\(=\frac{\left|2x+2\right|-6}{\left|x-2\right|}\)
Từ điều kiện đề bài \(\Rightarrow x>2\)
\(\Rightarrow M=\frac{2x+2-6}{x-2}=2\)
Vậy \(M=2\)\(\Leftrightarrow x=1+\sqrt[3]{2}+\sqrt[3]{4}\)