Cho \(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
Chứng minh rằng: \(\dfrac{64}{\left(a^2-3\right)^3}-3a\) có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a= \(\sqrt[3]{2-\sqrt{3}}\) + \(\sqrt[3]{2+\sqrt{3}}\)
Suy ra a^3 = 3a +4 => (a^2 -3)a=4
<=> \(\left(\frac{4}{a^2-3}\right)^3\)= a^3 <=>\(\frac{64}{\left(a^2-a\right)^3}\) -3a = 4
mà 4 nguyên suy ra đpcm
a: Sửa đề: căn 6+2căn 5-căn 5
\(a=\dfrac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}=\dfrac{2}{1}=2\)
b: \(a^3=2-\sqrt{3}+2+\sqrt{3}+3a\)
=>a^3-3a-4=0
=>a^3-3a=4
\(\dfrac{64}{\left(a^2-3\right)^3}-3a=\left(\dfrac{4}{a^2-3}\right)^3-3a\)
\(=\left(\dfrac{a^3-3a}{a^2-3}\right)^3-3a=a^3-3a\)
=4
Lời giải:
ĐK: $x\geq 0; x\neq 4; x\neq 9$
a)
\(P=\frac{2\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}-2)}+\frac{(2\sqrt{x}+1)(\sqrt{x}-2)}{(\sqrt{x}-3)(\sqrt{x}-2)}-\frac{(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{2\sqrt{x}-9+(2\sqrt{x}+1)(\sqrt{x}-2)-(\sqrt{x}+3)(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{x-\sqrt{x}-2}{(\sqrt{x}-3)(\sqrt{x}-2)}\)
\(=\frac{(\sqrt{x}-2)(\sqrt{x}+1)}{(\sqrt{x}-3)(\sqrt{x}-2)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(P=\frac{\sqrt{x}+1}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Với $x$ nguyên, để $P$ nguyên thì $\sqrt{x}-3$ phải là ước nguyên của $4$
Mà $\sqrt{x}-3\geq -3$ nên:
$\Rightarrow \sqrt{x}-3\in\left\{\pm 1;\pm 2;4\right\}$
$\Rightarrow x\in \left\{4;16;1;25;49\right\}$ (đều thỏa mãn.
Bạn xem lại đề bài. Thử giá trị $a$ vào biểu thức không thu đc số nguyên.
\(a>0\)
Có \(a^3=2-\sqrt{3}+3\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2-\sqrt{3}}\right)+2+\sqrt{3}\)
\(\Leftrightarrow a^3=4+3a\)
\(\Leftrightarrow a\left(a^2-3\right)=4\)\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}=a^{.3}\)
\(\Leftrightarrow\dfrac{64}{\left(a^2-3\right)^3}-3a=a^2-3a=4\) là số nguyên.