Cho tam ABC vuông tại A có trung tuyến CK.Trên tia đối của tia KC lấy D sao cho K là trung điểm của CD
a)CM:AB vuông góc với BD
b)Vẽ AM vuông góc CD tại M,BN vuông góc CD tại N.CM:AM=BN
c)Chứng minh:\(\frac{AC+BC}{2}\)>CK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự vẽ hình nhé
a,xét tam giác HDC có: E là trung điểm của HC nên DE là đường trung tuyến
A là trung điểm của DH nên AC là đường trung tuyến thứ 2
mà DE và AC cắt nhau tai F nên F là trọng tâm của tam giác HDC nên HF là đường trung tuyến của tam giac HDC hay HF cắt DC tại trung điểm của DC
b. vô lý sao lại HF=1/3DC đối chiếu lại câu a mà xem
k mih 1 k là dc rui
a) do Cx //AB mà IE vg vs AB(gt) nên IE vg vs CD (vì D thuộc Cx)
xét tg BME vầ tg CMI có: BEM=CIM=90 ; BM=CM(vì AM là đg trung tuyến) ; BME=CMI(đ.đ)
=>tg BME=tg CMI(ch-gn)=>ME=MI(2 cạnh t/ ư)=> M là t/đ của EI
b)do EI vg vs Dc(cmt) và I lf t/đ của DC(gt)=> EI là đg trung trực của DC,mà M thuộc EI nên MD=MC(ĐL)=.tg MCD cân tại M=>MDC=MCD(1)
mặt khác: EBM=ICM(vì tg BEM=tg CIM)(2)
từ (1), (2)=>EBM=MDC, mà EPM=MDC(vì CD//AB) nên EBM=EPM=>tg BMP cân tại M
c)xét tg BEID có: BE=DI(cùng =CI) và BE//DI(vì AB//CD, E thuộc AB, I thuộc DC)
=>tg BEID là hbh=>EI//BD. mà DC vg vs EI(cmt) nên DC vg vs BD
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD