K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Bạn ơi xem và trả lời hộ bài của mình đi , mình cảm ơn !!!

4 tháng 3 2020

\(x^2-\left(m+3\right)x+3m=0\)

\(\Delta=\left(m+3\right)^2-4.1.3m=m^2+6m+9-12m\)

\(=m^2-9m+9=\left(m-3\right)^2\)

Để pt có 2 nghiệm phân biệt thì \(\left(m-3\right)^2>0\)

\(\Rightarrow m\ne3\)

NV
16 tháng 1

b.

Khi \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)

Xét với \(m\ne\dfrac{5}{2}\):

\(\Delta'=\left(m-1\right)^2-3\left(2m-5\right)=m^2-8m+16=\left(m-4\right)^2\)

Pt đã cho luôn có 2 nghiệm \(\forall m\ne\dfrac{5}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1x_2=\dfrac{3}{2m-5}\end{matrix}\right.\)

Két hợp Viet với điều kiện đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{2m-5}\\x_1-x_2=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{8m-17}{2\left(2m-5\right)}\\x_2=\dfrac{-4m+13}{2\left(2m-5\right)}\end{matrix}\right.\)

Thế vào \(x_1x_2=\dfrac{3}{2m-5}\)

\(\Rightarrow\dfrac{\left(8m-17\right)\left(-4m+13\right)}{4\left(2m-5\right)^2}=\dfrac{3}{2m-5}\)

\(\Rightarrow32m^2-148m+161=0\)

\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{7}{4}\\m=\dfrac{23}{8}\end{matrix}\right.\)

NV
16 tháng 1

Câu b của em là 2 ý phân biệt đúng không?

NV
2 tháng 12 2021

\(\left\{{}\begin{matrix}9-8m>0\\9-5m>0\end{matrix}\right.\) \(\Rightarrow m< \dfrac{9}{8}\)

Gọi a là nghiệm chung của 2 pt

\(\Rightarrow\left\{{}\begin{matrix}a^2+3a+2m=0\\a^2+6a+5m=0\end{matrix}\right.\)

\(\Rightarrow3a+3m=0\Rightarrow a=-m\)

Thay vào 2 pt ban đầu:

\(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2m=0\\m^2-6m+5m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)

30 tháng 12 2019

PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)

a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong

b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)

c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\)  quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)

      \(4< m< 6\)

11 tháng 4 2017

Giải lại

điều kiện có 2 nghiệm\(\left(1\right)\left\{{}\begin{matrix}a\ne0\Rightarrow m+2\ne0\Rightarrow m\ne-2\\\Delta>0\Rightarrow\left(2m-1\right)^2-4\left(m+2\right)\left(m-3\right)=25\end{matrix}\right.\)

(2) có nghiệm thỏa mãn x1/x2 =1/2 hoặc x1/x2 =2

Phương trình có nghiệm x=1 với mọi m khác -2

\(\left[{}\begin{matrix}\dfrac{m-3}{m+2}=\dfrac{1}{2}\Rightarrow2m-3=m+2\Rightarrow m=8\\\dfrac{m-3}{m+2}=2\Rightarrow m-3=2m+4\Rightarrow m=-7\end{matrix}\right.\)

Kết luân

m= 8 hoặc m =-7

11 tháng 4 2017

Lời giải

(1)Điều kiện có 2 nghiệm\(\left\{{}\begin{matrix}a\ne0\Rightarrow m+2\ne0\\\Delta>0\Rightarrow\left(2m-1\right)^2-4\left(m+2\right)\left(m-3\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\\left(4m^2-4m+1\right)-4m^2+4m+24=25\end{matrix}\right.\) (1) \(\Leftrightarrow m\ne-2\)

(2) \(\left[{}\begin{matrix}\dfrac{x_1}{x_2}=\dfrac{1}{2}\\\dfrac{x_1}{x_2}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{2m-1-5}{2\left(m+2\right)}=\dfrac{m-3}{n+2}\\x_2=\dfrac{2m-1+5}{2\left(m+2\right)}=\dfrac{m+2}{2\left(m+2\right)}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-3}{m+2}=\dfrac{1}{2}\\\dfrac{m-3}{m+2}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2m-3.2=m+2\\m-3=m+2\end{matrix}\right.\) \(\Rightarrow m=8\)

Kết luận : m=8

NV
21 tháng 4 2023

Đặt \(x^2=t\ge0\) pt trở thành: \(t^2+\left(1-2m\right)t+m^2-1=0\) (1)

\(\Delta=\left(1-2m\right)^2-4\left(m^2-1\right)=-4m+5\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}t_1+t_2=2m-1\\t_1t_2=m^2-1\end{matrix}\right.\)

Từ \(x^2=t\) (2) ta có nhận xét: nếu \(t< 0\) thì (2) vô nghiệm, nếu \(t=0\) thì (2) có đúng 1 nghiệm \(x=0\), nếu \(t>0\) thì (2) có 2 nghiệm phân biệt \(x=\pm\sqrt{t}\)

Do đó:

a.

Phương trình đã cho vô nghiệm khi: (1) vô nghiệm hoặc (1) có 2 nghiệm đều âm

TH1: (1) vô nghiệm \(\Rightarrow-4m+5< 0\Rightarrow m>\dfrac{5}{4}\)

TH2: (1) có 2 nghiệm đều âm \(\Rightarrow\left\{{}\begin{matrix}-4m+5\ge0\\t_1+t_2=2m-1< 0\\t_1t_2=m^2-1>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -1\)

Kết hợp lại ta được: \(\left[{}\begin{matrix}m>\dfrac{5}{4}\\m< -1\end{matrix}\right.\)

b.

Pt có 2 nghiệm pb khi và chỉ khi (1) có đúng 2 nghiệm trái dấu (khi đó nghiệm dương của t sẽ cho 2 nghiệm x và nghiệm âm ko cho nghiệm x nào)

\(\Rightarrow t_1t_2=m^2-1< 0\Rightarrow-1< m< 1\)

c.

Pt có 3 nghiệm pb khi và chỉ khi (1) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=1\)

d.

Pt có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Rightarrow\left\{{}\begin{matrix}-4m+5>0\\t_1+t_2=2m-1>0\\t_1t_2=m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m>\dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow1< m< \dfrac{5}{4}\)

NV
21 tháng 4 2023

À ừ đúng rồi em quên mất TH (1) có nghiệm kép dương nữa

a: \(\text{ }\text{Δ}=\left(2m-3\right)^2-4\left(m^2-3m\right)\)

\(=4m^2-12m+9-4m^2+12m=9>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left\{{}\begin{matrix}x_1+x_2>2\\x_1+x_2< 12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m-3>2\\2m-3< 12\end{matrix}\right.\Leftrightarrow\dfrac{5}{2}< m< \dfrac{15}{2}\)