Tìm m để (d) và ( d') cắt nhau tại 1 điểm có hoành độ dương. Y= 2x-1+2m(d); y= -x-2m(d')
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi m=1 thì (d): y=2x-1+2=2x+1
Khi m=1 thì (d'): y=-x-2
Phương trình hoành độ giao điểm là:
2x+1=-x-2
=>3x=-3
hay x=-1
=>y=-2+1=-1
b: Phương trình hoành độ giao điểm là:
\(2x-1+2m=-x-2m\)
=>3x-1+4m=0
=>3x=1-4m
=>x=(1-4m)/3
Để x dương thì 1-4m>0
hay m<1/4
2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)
Giao điểm của (d) và (d') sẽ thỏa mãn hệ phương trình \(\hept{\begin{cases}y=2x-1+2m\\y=-x-2m\end{cases}}\)\(\Rightarrow2x-1+2m=-x-2m\)\(\Leftrightarrow3x=-4m+1\)\(\Leftrightarrow x=\frac{1-4m}{3}\)
Để giao điểm của (d0 và (d') có hoành độ dương thì \(x>0\)hay \(\frac{1-4m}{3}>0\)\(\Leftrightarrow1-4m>0\)\(\Leftrightarrow4m< 1\)\(\Leftrightarrow m< \frac{1}{4}\)
1: Thay x=-7 và y=0 vào (d), ta được:
-7(m+1)+2m-5=0
=>-7m-7+2m-5=0
=>-5m-12=0
=>m=-12/5
2: Thay x=0 và y=3 vào (d), ta được:
0(m+1)+2m-5=3
=>2m-5=3
=>2m=8
=>m=4
3: Thay x=0 và y=0 vào (d), ta được:
0(m+1)+(2m-5)=0
=>2m-5=0
=>m=5/2
PTHĐGĐ là:
x^2-2x-m=0(1)
Thay x=-1 vào (1), ta được
(-1)^2-2*(-1)-m=0
=>1+2-m=0
=>m=3
x1+x2=2
=>x2=2-(-1)=3
=>A(-1;1); B(3;9)