1 số tự nhiên a khi chia 4 dư3 , chia 17 dư 9 , chia 19 dư 13 . khi đó số a chia cko 1292 có số dư là :
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
Gọi số đã cho là A.Ta có:
A = 4a + 3
= 17b + 9 (a,b,c thuộc N)
= 19c + 3
Mặt khác: A + 25 = 4a+3+25=4a+28=4(a+7)
=17b+9+25=17b+34=17(b+2)
=19c+13+25=19c+38=19(c+2)
Như vậy A+25 đồng thời chia hết cho 4,17,19.Mà (4;17;19)=1=>A+25 chia hết cho 1292.
=>A+25=1292k(k=1,2,3,....)=>A=1292k-25=1292k-1292+1267=1292(k-1)+1267.
Do 1267<1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292.
\(\text{Gọi số đã cho là A . Ta có :}\)
\(A=\hept{\begin{cases}4a+3\\17b+9\\19c+3\end{cases}}(a,b,c\inℕ)\)
\(\text{Mặt khác : }A+25=\hept{\begin{cases}4a+3+25=4a+28=4(a+7)\\17b+9+25=17b+34=17(b+2)\\19c+3+25=19c+28=19(c+2)\end{cases}}\)
\(\text{Như vậy , A + 25 đồng thời chia hết cho 4,17,19 . Mà }(4,17,19)=1\)
\(\Rightarrow A+25⋮1292\)
\(\Rightarrow A+25=1292k(k=1,2,3,...)\Rightarrow A=1292k-25=1292k-1292+1267\)
\(=1292(k+1)+1267\)
Do 1267 < 1292 nên 1267 là số dư trong phép chia số đã cho A cho 1292
Vậy số a chia 1292 có số dư là 1267
Chúc bạn học tốt ~
- Gọi số đã cho là A . Ta có
A = 4a + 3 (a,b,c \(\in\)N)
= 17b + 9
= 19c + 3
Mặc khác : A + 25 = 4a + 3 + 25 = 4a + 28 = 4 (a + 7)
= 17b + 9 + 25 = 17b + 34 = 17 (b + 2)
= 19c + 13 + 25 = 19c + 38 = 19 (c + 2)
Như vậy A + 25 đồng thời chia hết cho 4,17,19
Mà 4,17,19 = 1 \(\Rightarrow\) A + 25 chia hết cho 1292
\(\Rightarrow A+25=1292k\left(k=1,2,3,...\right)\)
\(\Rightarrow A=1292k-25=1292k-1292+1267=1292\left(k-1\right)+1267\)
Do 1267 < 1292 nên 1267 là số dư trong phép chia số dã cho A cho 1292