K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

gọi đó là A đi.

Ta có:

1/13+1/14+1/14< 1/12+1/12+1/12=3/12=1/4

1/61+1/62+1/63< 1/60+1/60+1/60=3/60=1/20

=> 1/5+1/13+1/14+1/15+1/61+1/62+1/63<1/5+1/4+1/20=1/2

=>A< 1/2 (ĐPCM)

18 tháng 8 2015

Ta có : 

S = \(\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\frac{1}{12}x3+\frac{1}{60}x3\)

S < \(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

=> S < \(\frac{1}{2}\)

9 tháng 4 2017

Đặt :

\(A=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)

\(A=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)

Ta thấy :

\(\dfrac{1}{13}< \dfrac{1}{12};\dfrac{1}{14}< \dfrac{1}{12};\dfrac{1}{15}< \dfrac{1}{12}\)

\(\dfrac{1}{61}< \dfrac{1}{60};\dfrac{1}{62}< \dfrac{1}{60};\dfrac{1}{63}< \dfrac{1}{60}\)

\(\Rightarrow A< \dfrac{1}{5}+\left(\dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}\right)+\left(\dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}\right)\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{12}.3+\dfrac{1}{60}.3\)

\(\Rightarrow A< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)

\(\Rightarrow A< \dfrac{1}{2}\rightarrowđpcm\)

~ Chúc bn học tốt ~

6 tháng 5 2015

TA có:

1/12>1/13

1/12>1/14

1/12>1/15

=>1/12.3=1/4>1/13+1/14+1/15

1/60>1/61

1/60>1/62

1/60>1/63

=>1/60.3=1/20>1/61+1/62+1/63

=>1/5+1/4+1/20> 1/5+1/13+1/14+1/15+1/61+1/62+1/63

=>1/2> 1/5+1/13+1/14+1/15+1/61+1/62+1/63

20 tháng 6 2015

Ta có: 

\(\frac{1}{5}=\frac{1}{5}\)

\(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}<\frac{1}{12}.3=\frac{1}{4}\)

\(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{60}.3=\frac{1}{20}\)

=>S<\(\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

=>\(S<\frac{1}{20}\)(đpcm)

20 tháng 6 2015

Ta có: \(S=\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\frac{1}{5}+\left(\frac{1}{13}+\frac{1}{13}+\frac{1}{13}\right)+\left(\frac{1}{61}+\frac{1}{61}+\frac{1}{61}\right)\)\(\Rightarrow S<\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

\(\frac{1}{5}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{61}+\frac{1}{62}+\frac{1}{63}<\frac{1}{5}+\frac{1}{13}.3+\frac{1}{61}.3\)

\(=\frac{1}{5}+\frac{3}{13}+\frac{3}{61}<\frac{1}{5}+\frac{3}{12}+\frac{3}{60}=\frac{1}{5}+\frac{1}{4}+\frac{1}{20}=\frac{1}{2}\)

\(\Rightarrowđpcm\)

31 tháng 5 2015

Ta có:

S=1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)<1/5+1/12.3+1/60.3

=>S<1/5+1/4+1/20=10/20

Hay S<1/2