K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2018

a:xét tam giác BHD và tam giác CKD có:

góc BHD= góc CKD = 90 độ

góc D chung

vậy tam giác BHD đồng dạng với tam giác CKD(g.g)

29 tháng 7 2018

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)

\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)

Xét \(\Delta BHD\)và \(\Delta CKD\) có: 

                         \(\widehat{BHD}=\widehat{CKD}=90^0\)

                          \(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)

Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)

b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:

                     \(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)

                       \(\widehat{AHB}=\widehat{AKC}=90^0\)

Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)

Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay  \(AB.AK=AC.AH\)

C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\) 

\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)

Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)

d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.

Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I

\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)

\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)

Suy ra: \(\widehat{F}=\widehat{IEC}\)

Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)

Nên \(\widehat{FBO}=\widehat{ICE}\)

Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)

Chúc bạn học tốt.

20 tháng 3 2016

H, K để làm gì?

Trog tg ADC có ME // AD => CM/CE = CD/CA (Ta-let) (1)

trog tg BMF có AD // MF => BM/BF = BD/BA (2)

theo t/c đường pg trog tg ABC có CD/CA = BD/BA (3)

Từ (1), (2) và (3) => CM/CE = BM/CF, mà CM = BM => CE = BF

22 tháng 3 2016

Hồ sĩ tiến , để lm các câu a, b, c bn ak. Đây là câu cuối nhg mih o biết lm

a: Xét ΔACE vuông tại C và ΔADE vuông tại D có

AE chung

AC=AD

Do đó: ΔACE=ΔADE

Suy ra: \(\widehat{CAE}=\widehat{DAE}\)

hay AE là tia phân giác của \(\widehat{CAB}\)

b: Ta có: ΔACE=ΔADE

nên EC=ED

Ta có: AC=AD

nên A nằm trên đường trung trực của CD(1)

Ta có: EC=ED

nên E nằm trên đường trung trực của CD(2)

Từ (1) và (2) suy ra AE là đường trung trực của CD

8 tháng 10 2016

A B C D I K E F

a/ Dễ dàng chứng minh bằng cách áp dụng hệ thức về cạnh trong các tam giác vuông ABD và ACD : 

\(AE.AB=AF.AC=AD^2\)

b/ Bạn tham khảo ở đây nhé : http://olm.vn/hoi-dap/question/633787.html

c/ Áp dụng tứ giác nội tiếp để giải (liên quan đến góc ngoài của tứ giác nội tiếp)

a: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/DC=AB/AC=2/3

=>3DB-2DC=0

mà DB+DC=18

nên DB=7,2cm; DC=10,8cm

b: Xét ΔBDH vuông tại H và ΔCDK vuông tại K có

góc BDH=góc CDK

=>ΔBDH đồng dạng với ΔCDK

=>BH/CK=BD/CD=2/3