K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)

\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)

Xét \(\Delta BHD\)và \(\Delta CKD\) có: 

                         \(\widehat{BHD}=\widehat{CKD}=90^0\)

                          \(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)

Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)

b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:

                     \(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)

                       \(\widehat{AHB}=\widehat{AKC}=90^0\)

Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)

Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay  \(AB.AK=AC.AH\)

C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\) 

\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)

Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)

d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.

Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I

\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)

\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)

Suy ra: \(\widehat{F}=\widehat{IEC}\)

Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)

Nên \(\widehat{FBO}=\widehat{ICE}\)

Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)

Chúc bạn học tốt.

20 tháng 3 2016

H, K để làm gì?

Trog tg ADC có ME // AD => CM/CE = CD/CA (Ta-let) (1)

trog tg BMF có AD // MF => BM/BF = BD/BA (2)

theo t/c đường pg trog tg ABC có CD/CA = BD/BA (3)

Từ (1), (2) và (3) => CM/CE = BM/CF, mà CM = BM => CE = BF

22 tháng 3 2016

Hồ sĩ tiến , để lm các câu a, b, c bn ak. Đây là câu cuối nhg mih o biết lm

a: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/DC=AB/AC=2/3

=>3DB-2DC=0

mà DB+DC=18

nên DB=7,2cm; DC=10,8cm

b: Xét ΔBDH vuông tại H và ΔCDK vuông tại K có

góc BDH=góc CDK

=>ΔBDH đồng dạng với ΔCDK

=>BH/CK=BD/CD=2/3

 

28 tháng 4 2017

Bạn ơi, H ở đâu vậy

28 tháng 6 2023

a)xét ΔABD và ΔAMD có:

     góc BAD= góc MAD(AD là tia phân giác )

       AD chung

      góc ABD = góc AMD(=90độ) (ΔABC ⊥B; DM⊥AC)

    ⇒ΔABD=ΔAMD(ch-cgv)

b)Có:AB=AM (ΔABD=ΔAMD)

⇒A ϵ đường trung trực của BC (t/c đường trung trực)(1)

 Lại có : BD=MD(ΔABD=ΔAMD)  

 ⇒D ϵ đường trung trực BM(t/c đường trung trực) (2)

Từ (1) và(2)⇒AD là đường trung trực BM

c)Xét ΔBNDvàΔMCD có:

    góc DBN =góc DMC (90độ)(ΔABC ⊥B; DM⊥AC)

   BD=MD(ΔABD=ΔAMD) 

   góc BDN=MDC(2 góc dối đỉnh)

⇒ ΔBND=ΔMCD(g.c.g)

⇒BN=MC(2 cạnh tương ứng)

Có: AB+BN=AN và AM+MC=AC

Mà  AB=AM(ΔABD=ΔAMD) và BN=MC (CMT)

⇒AN =AC

⇒ΔANC cân

Lại có góc A =60 độ

⇒ΔANC đều

A N B M I C D (Hình vẽ minh họa)

(hình vẽ minh họa)

28 tháng 6 2023

d)CÓ: AD là tia phân giác góc BAC

⇒góc BAD= góc CAD=1/2 góc BAC=1/2 . 60độ=30 độ

⇒góc BAI=30độ

Lại có: góc NBD=90độ(ΔABC⊥B)

⇒BI<ND(quan hệ giữa góc và cạnh đối diện)