cho tam giác ABC đồng dạng với tam giác MNP với tỉ số đồng dạng của hai đường cao AH,MQ.tìm tỉ số đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔABC~ΔKHG
=>\(\dfrac{AB}{KH}=\dfrac{2}{3}\)
=>\(KH=AB\cdot\dfrac{3}{2}\)
ΔKHG~ΔMNP
=>\(\dfrac{KH}{MN}=\dfrac{1}{3}\)
=>\(\dfrac{AB}{MN}\cdot\dfrac{3}{2}=\dfrac{1}{3}\)
=>\(\dfrac{AB}{MN}=\dfrac{1}{3}:\dfrac{3}{2}=\dfrac{2}{9}\)
=>ΔABC đồng dạng với ΔMNP theo tỉ số \(\dfrac{2}{9}\)
Vì ΔABC ⁓ ΔMNP theo tỉ số k nên
A B M N = k ⇒ M N A B = 1 k
Nên ΔMNP ⁓ ΔABC theo tỉ số
Đáp án: B
Vì ΔABC ⁓ ΔMNP theo tỉ số k =2 ⇒ M N A B = 1 2
Nên ΔMNP ⁓ ΔABC theo tỉ số M N A B = 1 2
Đáp án: C
a, △ABC~△MNP => AB/MN=3/2 => k=3/2
b, SABC/SMNP=k2=9/4
=> 36/SMNP=9/4 => SMNP=16 cm2