1. Cho hình thang ABCD có góc A=góc D=90độ. AC⊥Bd tại I. C/m:
a.ABD~DAC
b. Gọi E là hình chiếu của b xuống DC và BO=OD. C/m e điểm O,E,A thẳng hàng
c.Tỉ số diên tích AIB, DIC
2.Cho hình thang cân ABCD có AB//CD, AB<AC, đường chéo BD⊥cạnh bên BC, vẽ đường cao BH
a.BDC~HBC
b.Cho BC=15 cm, DC=25 cm. tính HC,HD
c.diện tích ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a) Chứng minh rằng AMBD là hình thang cân:
BDC^ = 30* => ADB^ = 60*
DM là phân giác của ADB^ => ADM^ = MDE^ = CDE^ = 30* (1)
=> DE là phân giác vừa là đường cao của Δ CDM (DE L CM) => Δ CDM cân
lại có: CDM^ = 60* => CDM là Δ đều
BCM^ = BDC^ = 30* ( góc có cạnh tương ứng vuông góc)
DE là trung trực của CM, B thuộc DE => BC = BM => BMC^ = BCM^ = 30*
=> MBD^ = 60* = ADB^ (*)
=> Δ ADM = Δ BCM ( MD=MC, AD=BC,BMC^ = BCM^ )
=> AMD^ = BMC^ = 30* (2)
(1) và (2) => AMD^ = BDM^ = 30* (BDM^ = MDE^)
=> AM // BD (**) ( AM và BD có 2 góc ở vị trí so le trong = nhau)
(*) và (**) => AMBD là hình thang cân
b) Gọi N là hình chiếu của M trên DA, K là hình chiếu của M trên AB. Chứng minh rằng ba điểm N, K, E thẳng hàng.
gọi O là tâm hình chữ nhật ABCD.,
Δ OBC là tam giác đều ( OB=OC và CBO^ = 60*) , CE L BO => E là trung điểm của BO.
cm trên có Δ ADM = Δ BCM => MA = MB mà MK L AB => K là trung điểm của AB
=> KE là đường trung bình của Δ BOM => KE // BM (***)
AKMN là hình chữ nhật (có 3 góc vuông) => MN //= AK => MN //= BK ( vì K là trung điểm AB)
=> BMNK là hình bình hành => NK // BM (****)
(***) và (****) => N,K,E thẳng hàng
NK // KE và có điểm K chung.