K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

4 tháng 9 2017

 a) Chứng minh rằng AMBD là hình thang cân: 
BDC^ = 30* => ADB^ = 60* 
DM là phân giác của ADB^ => ADM^ = MDE^ = CDE^ = 30* (1) 
=> DE là phân giác vừa là đường cao của Δ CDM (DE L CM) => Δ CDM cân 
lại có: CDM^ = 60* => CDM là Δ đều 
BCM^ = BDC^ = 30* ( góc có cạnh tương ứng vuông góc) 
DE là trung trực của CM, B thuộc DE => BC = BM => BMC^ = BCM^ = 30* 
=> MBD^ = 60* = ADB^ (*) 
=> Δ ADM = Δ BCM ( MD=MC, AD=BC,BMC^ = BCM^ ) 
=> AMD^ = BMC^ = 30* (2) 
(1) và (2) => AMD^ = BDM^ = 30* (BDM^ = MDE^) 
=> AM // BD (**) ( AM và BD có 2 góc ở vị trí so le trong = nhau) 
(*) và (**) => AMBD là hình thang cân 

b) Gọi N là hình chiếu của M trên DA, K là hình chiếu của M trên AB. Chứng minh rằng ba điểm N, K, E thẳng hàng. 
gọi O là tâm hình chữ nhật ABCD., 
Δ OBC là tam giác đều ( OB=OC và CBO^ = 60*) , CE L BO => E là trung điểm của BO. 
cm trên có Δ ADM = Δ BCM => MA = MB mà MK L AB => K là trung điểm của AB 
=> KE là đường trung bình của Δ BOM => KE // BM (***) 
AKMN là hình chữ nhật (có 3 góc vuông) => MN //= AK => MN //= BK ( vì K là trung điểm AB) 
=> BMNK là hình bình hành => NK // BM (****) 
(***) và (****) => N,K,E thẳng hàng 
NK // KE và có điểm K chung.

16 tháng 3 2020

bạn Đức Cường

tham khảo : Zoro_Mắt_Diều_Hâu 

16 tháng 3 2020

mình lộn :<

tham khảo tại đây : Câu hỏi của Zoro_Mắt_Diều_Hâu