Có tồn tại hay không một số k sao cho
\(2^k+3^k\)
Là số chính phương .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số chính phương phải tìm là \(^{m^2}\) và \(n^2\) ( m , n \(\in\) N ; m > 1002 và n )
Ta có : \(m^2-n^2=1002\)
\(\Leftrightarrow m^2+mn=mn-n^2=1002\)
\(\Leftrightarrow m.\left(m-n\right)-\left(mn+n^2\right)=1002\)
\(\Leftrightarrow m.\left(m+n\right)-\left(m+n\right)=1002\)
\(\Leftrightarrow\left(m+n\right).\left(m-n\right)=1002\)
Ta thấy : Nếu m , n chẵn thì m + n , m - n chẵn
Nếu m , n chẵn hoặc m lẻ , n chẵn thì n + m lẻ
Tóm lại m + n và m - n cùng tính chất chia lẻ
Tích : ( m + n ) . ( m - n ) = 1002 là số chẵn
\(\Rightarrow m+n\) chẵn nhưng 2 số cùng tính chất chẵn lẻ
\(m-n\) chẵn
( m , n \(\in\) N , m > n )
nên m + n và m - n cùng chẵn
\(\Rightarrow\) ( m + n ) . ( m - n ) chia hết cho 4 ngưng 1002 không chia hết cho 4 chia hết cho 2
Vậy không có \(m^2-n^2-=1002\)
Gỉa sử tồn tại k để 2k + 3k là số chính phương
Nếu \(k=4t\) ( t thuộc N*)
thì: \(2^k+3^k=2^{4t}+3^{4t}=16^t+81^t\) có tận cùng là 7 (mâu thuẫn, do số chính phương ko tận cùng = 7)
Nếu \(k=4t+1\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+1}+3^{4t+1}=16^t.2+81^t.3\) chia 3 dư 2 (mâu thuẫn, do số chính phương chia 3 chỉ có thể dư 0 or 1)
Nếu \(k=4t+2\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+2}+3^{4t+2}=16^t.4+81^t.9\) có tận cùng là 3 (mâu thuẫn,.....)
Nếu \(k=4t+3\) ( t thuộc N*)
thì \(2^k+3^k=2^{4t+3}+3^{4t+3}=16^t.8+81^t.27\) chia 3 dư 2 (mâu thuẫn,....)
Vậy không tồn tại k để 2k + 3k là số chính phương
Em mới hc lớp 7 ko biết đúng ko
Giả sử: \(2^k+3^k=n^2\)(tức là số chính phương)
Ta có:
\(2^k\equiv2\)(mod 0) và \(3^k\equiv3\)(mod 0)
Suy ra: \(2^k+3^k\equiv5\)(mod 0)
Suy ra: \(n^2\equiv5\)(mod 0)
Mà 5 chia 3 dư 2
Suy ra: \(n^2\)chia 3 dư 2
Sử dụng bổ đề số chính phương chia 3 không thể dư 2
Suy ra: Phản chứng
Vậy không tồn tại ........