K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2021

\(\sqrt{2x-1}+5< 2\)   

\(\sqrt{2x-1}< -3\)   ( sai vì \(\sqrt{2x-1}\ge0\forall x\)   

Vậy pt vô nghiệm 

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

1.

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$A=|x+2|+|x+3|=|x+2|+|-x-3|\geq |x+2-x-3|=1$

Vậy GTNN của $A$ là $1$. Giá trị này đạt tại $(x+2)(-x-3)\geq 0$

$\Leftrightarrow (x+2)(x+3)\leq 0$

$\Leftrightarrow -3\leq x\leq -2$

 

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

2. ĐKXĐ: $x\geq 1$

\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}\)

\(=\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}=|\sqrt{x-1}+1|+|\sqrt{x-1}-1|\)

\(=|\sqrt{x-1}+1|+|1-\sqrt{x-1}|\geq |\sqrt{x-1}+1+1-\sqrt{x-1}|=2\)

Vậy gtnn của $B$ là $2$. Giá trị này đạt tại $(\sqrt{x-1}+1)(1-\sqrt{x-1})\geq 0$

$\Leftrightarrow 1-\sqrt{x-1}\geq 0$

$\Leftrightarrow 0\leq x\leq 2$

a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

AH
Akai Haruma
Giáo viên
20 tháng 9 2023

Lời giải:

a. Để bt có nghĩa thì $x^2-x+1\geq 0$

$\Leftrightarrow (x-\frac{1}{2})^2+\frac{3}{4}\geq 0(*)$ 

$\Leftrightarrow x\in\mathbb{R}$ (do $(*)$ luôn đúng với mọi số thực $x$)

b.

Để bt có nghĩa thì $x^2-5\geq 0$

$\Leftrightarrow (x-\sqrt{5})(x+\sqrt{5})\geq 0$

$\Leftrightarrow x\geq \sqrt{5}$ hoặc $x\leq -\sqrt{5}$

c. 

Để bt có nghĩa thì: $-x^2+2x-1\geq 0$

$\Leftrightarrow -(x^2-2x+1)\geq 0$

$\Leftrightarrow x^2-2x+1\leq 0$

$\Leftrightarrow (x-1)^2\leq 0(*)$

Do $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$

Nên $(*)\Leftrightarrow (x-1)^2=0$

$\Leftrightarrow x=1$

d.

Để bt có nghĩa thì \(\left\{\begin{matrix} x-1\neq 0\\ \frac{-2}{x-1}\geq 0\end{matrix}\right.\Leftrightarrow x-1<0\Leftrightarrow x<1\)

a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)

b: ĐKXĐ: \(x< \dfrac{15}{2}\)

c: ĐKXĐ: \(x\le0\)

10 tháng 7 2021

a) \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{1}{x-1}\)

 

10 tháng 7 2021

undefinedundefined

13 tháng 8 2021

a,\(A=2\sqrt{x^2+x+\dfrac{1}{2}}=2\sqrt{x^2+x+\dfrac{1}{4}+\dfrac{1}{4}}=2\sqrt{\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)

\(=\sqrt{4\left(x+\dfrac{1}{2}\right)^2+1}\ge1\) dấu"=" xảy ra<=>x=-1/2

\(B=\sqrt{2\left(x^2-2x+\dfrac{5}{2}\right)}=\sqrt{2\left[x^2-2x+1+\dfrac{3}{2}\right]}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\) dấu"=" xảy ra<=>x=1

\(C=\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}}\ge\dfrac{-2}{-\sqrt{2}}=\sqrt{2}\) dấu"=" xảy ra<=>x=1

\(D=x-2\sqrt{x+2}\ge-2\) dấu"=" xảy ra<=>x=-2

 

13 tháng 8 2021

Câu D≥-3 Dấu"=" xảy ra khi x=-1