Tìm GTNN của đa thức
4x2-8x+25
Mọi người giải chi tiết giúp mình nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(2x+2)2-9
vậy GTNN là -9
mình làm hơi tắt nhưng chắc bạn hiểu mà !!!
\(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
=>Pmin=(x-1)2+4=4
<=>(x-1)2=0
<=>x-1=0
<=>x=1
Vậy Pmin=4 khi x=1
----------------------------------------------------------
\(Q=2x^2-6x=2\left(x^2-3x\right)=2\left[x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
=>Qmin=\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}=-\frac{9}{2}\)
<=>\(2\left(x-\frac{3}{2}\right)^2=0\)
<=>\(\left(x-\frac{3}{2}\right)^2=0\)
<=>\(x-\frac{3}{2}=0\)
<=>\(x=\frac{3}{2}\)
Vậy Qmin=\(-\frac{9}{2}\) khi \(x=\frac{3}{2}\)
Có : A = ( 156,25x^2 - 362,5x + 210,25 ) - 84,75
= ( 12,5x - 29/2 )^2 - 84,75 >= -84,75
Dấu "=" xảy ra <=> 12,5x-29/2 = 0 <=> x = 29/25
Vậy GTNN của A = -84,75 <=> x=29/25
Tk mk nha
\(4x^2-8x+25\)
\(=\left(4x^2-8x+4\right)+21\)
\(=\left(2x-2\right)^2+21\)
Mà \(\left(2x-2\right)^2\ge0\forall x\)
\(\Rightarrow\) giá trị nhỏ nhất của biểu thức trên là 21
Dấu " = " xảy ra khi : \(2x-2=0\Leftrightarrow x=1\)
Vậy ...