Chứng minh rằng :
b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
c) \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)
\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)
\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)
a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)
= a3+b3+a3-b3 = 2a3
b) a3+b3
= (a+b)(a2-ab+b2)
= (a+b)(a2- 2ab+b2)+ab
= (a+b)(a2-b2)+ab
Trước hết , ta khai triển vế trái , sau đó , nhóm các hạng tử .
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+b^2d^2+2abcd+a^2d^2+b^2c^2-2abcd\)
\(=\left(a^2c^2+a^2d^2\right)+\left(b^2c^2+b^2d^2\right)\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
Vậy \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\left(ĐPCM\right)\)
A) Ta có :
Vế phải = ( a + b ) ( a2 - 2ab + b2 +ab )
= ( a + b ) ( a2 - ab + b2 )
= a3 + b3 = Vế trái ( điều phải chứng minh )
Chúc bạn học tốt ^^
Câu a) thôi nhé
Ta có (a+b) [(a-b)2+ab] = (a+b)(a2-ab-b2) = a3-a2b + ab2 + ba2 - ab2 +b3
Thu gọn lại ta được a3 + b3
(ac+bd)^2=\(^{a^2c^2+2abcd+b^2d^2}\)
\(\left(ad-bc\right)^2=a^2d^2-2abcd+b^2c^2\)
\(\Rightarrow\left(ac+bd\right)^2-\left(ad-bc\right)^2=a^2c^2+a^2d^2+b^2c^2+b^2d^2\) =vp(dpcm)
Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)
\(\Rightarrow x+y+z\ge0\)
\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)
Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)
=> Đẳng thức (1) luôn đúng với mọi x
Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)
và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\Leftrightarrow0=0\)Có điều này đúng nên ta có đpcm đúng
\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=\left(ac\right)^2+2acbd+\left(bd\right)^2+\left(ad\right)^2-2adbc+bc^2\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
b)
VP=(a+b)[(a-b)2+ab]
=(a+b)(a2-2ab+b2+ab)
=(a+b)(a2-ab+b2)
=a3+b3=VT
Vậy x3+y3=(a+b)[(a-b)2+ab]
c)
VP=(ac+bd)2+(ad-bc)2
=a2c2+2abcd+b2d2+a2d2-2abcd+b2c2
=a2c2+b2d2+a2d2+b2c2
=(a2c2+a2d2)+(b2d2+b2c2)
=a2.(c2+d2)+b2.(c2+d2)
=(a2+b2)(c2+d2)
Vậy (a2+b2)(c2+d2)=(ac+bd)2+(ad-bc)2
tks mem trieu dang