K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2020

\(\Leftrightarrow\frac{x^2}{y+z}-\frac{z^2}{y+z}+\frac{z^2}{x+y}-\frac{y^2}{x+y}+\frac{y^2}{x+z}-\frac{x^2}{x+z}\ge0\)

\(\Leftrightarrow\left(\frac{x^2}{y+z}-\frac{x^2}{x+z}\right)+\left(\frac{y^2}{x+z}-\frac{y^2}{x+y}\right)+\left(\frac{z^2}{x+y}-\frac{z^2}{y+z}\right)\ge0\)

\(\Leftrightarrow x^2\left(\frac{1}{y+z}-\frac{1}{x+z}\right)+y^2\left(\frac{1}{x+z}-\frac{1}{x+y}\right)+z^2\left(\frac{1}{x+y}-\frac{1}{y+z}\right)\ge0\)

\(\Leftrightarrow x^2\left(\frac{x-y}{\left(y+z\right)\left(x+z\right)}\right)+y^2\left(\frac{y-z}{\left(x+z\right)\left(x+y\right)}\right)+z^2\left(\frac{z-x}{\left(x+y\right)\left(y+z\right)}\right)\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)\left(x+y\right)+y^2\left(y-z\right)\left(y+z\right)+z^2\left(z-x\right)\left(z+x\right)\ge0\)

\(\Leftrightarrow x^2\left(x^2-y^2\right)+y^2\left(y^2-z^2\right)+z^2\left(z^2-x^2\right)\ge0\)

\(x^4-x^2y^2+y^4-y^2z^2+z^4-z^2x^2\ge0\)

\(\Leftrightarrow2x^4-2x^2y^2+2y^4-2y^2z^2+2z^4-2z^2x^2\ge0\)

\(\Leftrightarrow\left(x^4-2x^2y^2+y^4\right)+\left(y^4-2y^2z^2+z^4\right)+\left(z^4-2z^2x^2+x^4\right)\ge0\)

\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(y^2-z^2\right)^2+\left(z^2-x^2\right)^2\ge0\)(đúng)

30 tháng 7 2018

dinh lam nhung thoi vi chac chan se con nguoi vao lam ho :) 

31 tháng 7 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{4\left(x^5-x^2\right)}{x^5+y^2+z^2}+1=\frac{5x^5-4x^2+y^2+z^2}{x^5+y^2+z^2}=\frac{3x^5+\left(2x^5+y^2+z^2-4x^2\right)}{x^5+y^2+z^2}\)

\(\ge\frac{3x^5+4\sqrt[4]{x^{10}y^2z^2}-4x^2}{x^5+y^2+z^2}\ge\frac{3x^5}{x^5+y^2+z^2}=\frac{3x^4}{x^4+\frac{y^2+z^2}{x}}\ge\frac{3x^4}{x^4+yz\left(y^2+z^2\right)}\ge\frac{3x^4}{x^4+y^4+z^4}\)

suy ra:  \(\frac{x^5-x^2}{x^5+y^2+z^2}\ge\frac{3}{4}.\frac{x^4}{x^4+y^4+z^4}-\frac{1}{4}\)

tương tự ta có: \(\frac{y^5-y^2}{y^5+z^2+x^2}\ge\frac{3}{4}.\frac{y^4}{x^4+y^4+z^4}-\frac{1}{4}\)

                    \(\frac{z^5-z^2}{z^5+y^2+x^2}\ge\frac{3}{4}.\frac{z^4}{x^4+y^4+z^4}-\frac{1}{4}\)

Cộng theo vế ta được:

\(VT\ge\frac{3}{4}.\frac{x^4+y^4+z^4}{x^4+y^4+z^4}-\frac{3}{4}=0\)

Vậy BĐT đc c/m

p/s: bài này mk cx k chắc (nhờ bn ktra nó kêu cứ sai sai nên mk cx k rõ) bạn tham khảo, sai đâu ib cho mk nhé

      thân ái!

9 tháng 3 2018

Trong toán tuổi thơ có bài này =))))

Do vai trò bình đẳng khi hoán vị vòng quanh các số x,y,z trong bài toán. Nên ta co thể giả sử \(x\ge z,y\ge z\).Ta có: \(\frac{x^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)

\(=\frac{x^2-y^2+y^2-z^2}{y+z}+\frac{y^2-x^2}{z+x}+\frac{z^2-y^2}{x+y}\)

\(=\left(x^2-y^2\right)\left(\frac{1}{y+z}-\frac{1}{x+y}\right)\)

\(=\frac{\left(x+y\right)\left(x-y\right)^2}{\left(y+z\right)\left(z+x\right)}+\frac{\left(y^2-z^2\right)\left(x-z\right)}{\left(y+z\right)\left(x+y\right)}\ge0\)

Đẳng thức xảy ra khi và chỉ khi x = y = z

NV
3 tháng 6 2019

Đặt \(\left\{{}\begin{matrix}\frac{x}{y}=a\\\frac{y}{z}=b\\\frac{z}{x}=c\end{matrix}\right.\) \(\Rightarrow abc=1\)

\(P=\frac{2b}{c}+\frac{2c}{a}+\frac{2a}{b}-a-b-c-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

\(P=2ab^2+2bc^2+2a^2c-a-b-c-\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\)

\(ab^2+a\ge2ab\Rightarrow ab^2\ge2ab-a\) ; \(ab^2+\frac{1}{a}\ge2b\Rightarrow ab^2\ge2b-\frac{1}{a}\)

\(\Rightarrow2ab^2\ge2ab+2b-a-\frac{1}{a}\)

Tương tự và cộng lại:

\(\Rightarrow P\ge2\left(ab+ac+bc\right)+2\left(a+b+c\right)-2\left(a+b+c\right)-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow P\ge\frac{2\left(ab+ac+bc\right)}{abc}-2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)