Chứng minh : x2+y2-2x-2y+2017>0 với mọi số thực x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn xem lại đề nhé: Ví dụ chọn x=2, y=1 ta có: 22-4.2.1+1+2=-1<0
Ta có:
x2 – 2xy + y2 + 1
= (x2 – 2xy + y2) + 1
= (x – y)2 + 1.
(x – y)2 ≥ 0 với mọi x, y ∈ R
⇒ x2 – 2xy + y2 + 1 = (x – y)2 + 1 ≥ 0 + 1 = 1 > 0 với mọi x, y ∈ R (ĐPCM).
\(x^2+2y^2-2xy+2x-4y+3\)
\(=x^2+y^2+y^2-2xy+2x-2y-2y^2+1+1+1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(2x-2y\right)+1+1\)
\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+1\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-1\right)^2+1\)
\(=\left(x-y+1\right)^2+\left(y-1\right)^2+1\)
Vì \(\left(x-y+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)
Nên \(\left(x-y+1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)
Vậy \(x^2+2y^2-2xy+2x-4y+3>0\forall x;y\)
\(x^2-2xy-x+1+2y^2=x^2-x\left(2y+1\right)+\frac{\left(2y+1\right)^2}{4}-\frac{\left(2y+1\right)^2}{4}+2y^2+1\)
\(=\left(x-\frac{2y+1}{2}\right)^2+\frac{1}{4}\left(2y-1\right)^2+\frac{1}{2}>0\)
đùa nhau
Ta có : \(x^2+y^2-2x-2y+2017\)
\(=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+2015\)
\(=\left(x-1\right)^2+\left(y-1\right)^2+2015\)
Vì : \(\left(x-1\right)^2\ge0\forall x\in R\) ; \(\left(y-1\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-1\right)^2+\left(y-1\right)^2+2015\ge0+0+2015=2015>0\forall x\in R\)
Vậy \(x^2+y^2-2x-2y+2017\ge0\forall x\in R\)