K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:
a) Xét tam giác $HEA$ và $HDB$ có:

$\widehat{HEA}=\widehat{HDB}=90^0$

$\widehat{EHA}=\widehat{DHB}$ (đối đỉnh)

$\Rightarrow \triangle HEA\sim \triangle HDB$ (g.g)

b) Xét tam giác $CKD$ và $CDA$ có:

$\widehat{C}$ chung

$\widehat{CKD}=\widehat{CDA}=90^0$ 

$\Rightarrow \triangle CKD\sim \triangle CDA$ (g.g)

$\Rightarrow \frac{CK}{CD}=\frac{CD}{CA}\Rightarrow CD^2=CK.CA$ (đpcm)

c) Xét tam giác $ADK$ và $DCK$ có:

$\widehat{AKD}=\widehat{DKC}=90^0$

$\widehat{ADK}=\widehat{DCK}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \triangle ADK\sim \triangle DCK$ (g.g)

$\Rightarrow \frac{AD}{DC}=\frac{DK}{CK}\Leftrightarrow \frac{FD}{2DC}=\frac{DK}{2CN}$

$\Rightarrow \frac{FD}{DC}=\frac{DK}{CN}$

Tam giác $FDK$ và $DCN$ đồng dạng với nhau do:

$\frac{FD}{DC}=\frac{DK}{CN}$ (cmt)

$\widehat{FDK}=\widehat{DCN}$ (cùng phụ $\widehat{KDC}$)

$\Rightarrow \frac{DFK}=\widehat{CDN}$

$\Rightarrow \widehat{DFK}+\widehat{FDN}=\widehat{CDN}+\widehat{FDN}$

$\Leftrightarrow 180^0-\widehat{FSD}=\widehat{FDC}=90^0$

$\Rightarrow \widehat{FSD}=90^0$ nên ta có đpcm.

 

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Hình vẽ:

undefined

12 tháng 12 2016

AI GIÚP MÌNH VỚI! khocroi

15 tháng 12 2016

MÌNH NHẦM

CÂU a LÀ CHỨNG MINH TAM GIÁC EIB=AIE

a: Xét ΔAIB và ΔAIC có

AB=AC

IB=IC

AI chung

=>ΔAIB=ΔAIC

b: ΔABC cân tại A

mà AI là trung tuyến

nên AI vuông góc CB

c: Xét ΔABM và ΔACN co

AB=AC

góc ABM=góc ACN

BM=CN

=>ΔABM=ΔACN

=>AM=AN

27 tháng 12 2018

a/ △ABD và △ECD có:

AD=DE (gt)

BD=DC (D là trung điểm)

\(\widehat{BDA}=\widehat{CDE}\) (đối đỉnh)

➜ △ABD = △ECD (c.g.c)

b/ Từ chứng minh trên, ta suy ra:

\(\widehat{ABD}=\widehat{DCE}\) (hai góc tương ứng)

vì hai góc trên nằm ở vị trí so le trong nên AB//CE

c/❄△BDE và △ADC có:

\(\widehat{BDE}=\widehat{ADC}\) (đối đỉnh)

AD=DE (gt)

BD=DC (D là trung điểm)

➜△BDE=△ADC (c.g.c)

\(\widehat{EBD}=\widehat{ACD}\) (2 góc tương ứng)

❄△BDK và △ADH có:

\(\widehat{EBD}=\widehat{ACD}\) (△BDE=△ADC)

BD=DC (D là trung điểm)

\(\widehat{BDK}=\widehat{CDH}\) (đối đỉnh) ➜ △BDK =△ADH (g.c.g)(vì câu này không thể chứng minh theo các hướng khác nên mình đành làm cách này) ➜ KD=HD (2 cạnh tương ứng) ➜ D là trung đểm của KH
7 tháng 1 2022

Cho sp đi

7 tháng 1 2022

Cho sp đi