K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

Ta có : 

\(M\left(x\right)=x^4+2x^2+1\)

\(M\left(x\right)=\left(x^2+1\right)^2\ge0\)

Dấu "=" xảy ra khi \(x^2+1=0\)

Lại có : \(x^2\ge0\)

\(\Rightarrow\)\(x^2+1\ge1\)

Nên dấu "=" không thể xảy ra 

Vậy đa thức 

\(M\left(x\right)=x^4+2x^2+1\) không có nghiệm 

Chúc bạn học tốt ~ 

21 tháng 3 2022

\(x^4+2x^3-2x^2-6x+5=0\\ \Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(4x^3-8x^2+4x\right)+\left(5x^2-10x+5\right)=0\\ \Leftrightarrow x^2\left(x^2-2x+1\right)+4x\left(x^2-2x+1\right)+5\left(x^2-2x+1\right)=0\\ \Leftrightarrow\left(x^2-2x+1\right)\left(x^2+4x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x^2+4x+4\right)+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x+2\right)^2+1=0\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)

21 tháng 3 2022

cảm ơn

tui hong bít nàm :>>>>>

2 tháng 5 2022

đa thức có nghiệm là 1

14 tháng 9 2021

-1 chắc thế

a: A(x)=3x^5+x^4+x^2+2x

B(x)=-3x^5-x^4+x^2+x-2

b: M(x)=3x^5+x^4+x^2+2x-3x^5-x^4+x^2+x-2

=2x^2+3x-2

c: M(-2)=8-6-2=0

d: M(3)=2*3^2+3*3-2=18+9-2=25

=>x=3 ko là nghiệm

3 tháng 5 2021

`m=1=>f(x)=0`

`=>m=1(tm)`

`m=-1=>f(x)=9`

`=>m=-1(l)`

`m=2=>f(x)=1`

`=>m=2(l)`

`m=-2=>f(x)=-7`

`=>m=-2(l)`

Vậy m=1 thì f(x)=0

22 tháng 4 2022

Thay x = 1 vào đa thứ F(x) ta cso

F(x) = 14 + 2.13 - 2.12- 6.1 + 5

F (x) = 0

Vậy 1 không phải là nghiệm của đa thức F(x)

 

Thay x = -1 vào đa thức F(x) ta có

F(x) = -14 + 2.(-13) - 2.(-12)- 6. (-1) + 5

F(x) = 8

Vậy -1 không phải là nghiệm của đa thức F(x)

 

Thay x = 2 vào đa thức F(x) ta có

F(x) = 24 + 2.23 - 2.22- 6.2 + 5

F(x) = 17

Vậy 2 không phải là nghiệm của đa thức F(x)

 

Thay x = 12 vào đa thức F(x) ta có

F(x) = -24 + 2.(-23) - 2.(-22)- 6.(-2) + 5

F(x)= -7

Vậy -2 không phải là nghiệm của đa thức F(x)

 

23 tháng 4 2022

Thank

8 tháng 4 2022

Mũ chẵn lớn hơn bằng 0 mà cộng thêm 1 số không âm nữa nên các đa thức trên luôn lớn hơn 0

a: Vì \(x^2+1>0\forall x\)

nên đa thức này vô nghiệm

b: \(2x^2+1>0\forall x\)

nên đa thức này vô nghiệm

c: \(x^4+2>0\forall x\)

nên đa thức này vô nghiệm

27 tháng 10 2023

a, Sửa đề:

\(3x^2-\sqrt3 x+\dfrac14(dkxd:x\geq0)\\=(x\sqrt3)^2-2\cdot x\sqrt3\cdot\dfrac12+\Bigg(\dfrac12\Bigg)^2\\=\Bigg(x\sqrt3-\dfrac12\Bigg)^2\)

b, 

\(x^2-x-y^2+y\\=(x^2-y^2)-(x-y)\\=(x-y)(x+y)-(x-y)\\=(x-y)(x+y-1)\)

c,

\(x^4+x^3+2x^2+x+1\\=(x^4+x^3+x^2)+(x^2+x+1)\\=x^2(x^2+x+1)+(x^2+x+1)\\=(x^2+x+1)(x^2+1)\)

d,

\(x^3+2x^2+x-16xy^2\\=x(x^2+2x+1-16y^2)\\=x[(x+1)^2-(4y)^2]\\=x(x+1-4y)(x+1+4y)\\Toru\)

9 tháng 4 2021

a) A(x) = 0 ⇔ 6 - 2x = 0 ⇔ x = 3

Nghiệm của đa thức là x = 3

b)1. P(1) = \(1^4+2.1^2+1\) = 4

P(\(-\dfrac{1}{2}\)) = \(\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1\) = \(\dfrac{25}{16}\)

Ta có: P(x) = \(\left(x^2+1\right)^2\)

Vì \(\left(x^2+1\right)^2\) ≥ 0 

Nên P(x) = 0 khi \(x^2+1=0\) ⇔ \(x^2=-1\) (vô lý)

Vậy P(x) không có nghiệm

a) Đặt A(x)=0

\(\Leftrightarrow6-2x=0\)

\(\Leftrightarrow2x=6\)

hay x=3

Vậy: x=3 là nghiệm của đa thức A(x)