K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

bai toan nay kho

10 tháng 2 2018

Tham khảo bài này :

cách 1: 
xét 3^k. 
chọn k từ 1 đến 999 ta được dãy số 
3; 3² ; 3³;...; 3^999 
999 số trên khi chia cho 1000 sẽ được 999 số dư 
(0,1...999) 
xét 2 trh: 
trh 1: số dư của các số trong dãy đôi một khác nhau 
=> tồn tại một số trong dãy chia 1000 dư 1 
=> 3^a -1 chia hết 1000 
=> đpcm 

trh2: số dư của các số trong dãy không khác nhau đôi một 
=> sẽ có it nhất 2 số đồng dư 
2 số đó là: 3^m và 3ⁿ (1≤m<n≤999) 
=> hiệu của 2 số này chia hết cho 1000 
=> 3ⁿ - 3^m = h.1000 
mà: 3ⁿ - 3^m = 3^m.(3^(n-m) -1) 
lại có: 3^m không chia hết cho 1000 
=> 3^(n-m) - 1 chia hết cho 1000 
mà 1≤m<n≤999 => 0 ≤ n - m ≤ 999 
=> đpcm 
vậy tồn tại số k thuộc N sao cho 3^k-1 chia hết 1000 
.......... ....... 
cách 2: 
xét k= 2n (n chẵn) 
A= 3^(2n) -1 
A= (10-1)^n -1 
khai triển nhị thức ta đc: 
A= 10ⁿ - 1Cn.10^(n-1) + 2Cn.10^(n-2) +...+ (n-2)Cn.10^2 - (n-1)Cn.10 +1 -1 
A= 1000.[10^(n-2) -.....(n-3)Cn] + 100.n.(n+1)\2 - 10n 
lấy n= 100m 
=>B= n.(n+1)\2.100 - 10n 
=>B= 1000.(50.101m -m) 
=> A chia hết 1000 khi k= 200m

25 tháng 12 2016

tôi chịu

 

30 tháng 4 2018

:3 Số 'm' phải là số lẻ nhé cậu 

Ta có : \(1+2+...+2017=\frac{2017.\left(2017+1\right)}{2}=2017.1009\)

Đặt \(S=\left(1^m+2^m+...+2017^m\right)\)

Ta có : \(S=\left(1^m+2017^m\right)+\left(2^m+2016^m\right)+......\)

Do m lẻ nên \(S⋮2018=1009.2⋮1009\)

Vậy \(S⋮1009\)

Mặt khác ta lại có 

\(S=\left(1^m+2^m+...+2017^m\right)=\left(1^m+2016^m\right)+\left(2^m+2015^m\right)+.....+2017^m\)   \(⋮2017\)

=> \(S⋮2017\)

Mà (1009,2017) = 1 

=> \(S⋮2017.1009=......\)

1 tháng 6 2017

105= ( ... 0 )

=> De 2013k -1 chia het cho 105 thi 2013- 1 co tan cung la 0 hay 2013k -1 = (...0)

=> 2013k = ( ... 0 ) +1 = ( ... 1 )

ma ta co : ( .... 3 ) 4m thi co tan cung la ( ... 1)         ( m thuoc N*)

=> K = 4m 

Vay ton tai mot so tu nhien K de 2013-1 chia het cho 105 sao cho K = 4m

ko chac vi moi hoc lop 6 ^_^