Tìm số tự nhiên n sao cho:
S(n)=n^2 - 2018n +11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(n^3+2018n=n\left(n-1\right)\left(n+1\right)+2019n⋮3\).
Lại có \(2020^{2019}+4\equiv1^{2019}+4\equiv2\left(mod3\right)\).
Từ đó suy ra không tồn tại n thoả mãn đề bài.
\(2020\equiv1\left(mod3\right)\Rightarrow2020^{2019}\equiv1\left(mod3\right)\)
\(\Rightarrow2020^{2019}+4\equiv2\left(mod\right)3\Rightarrow VP⋮̸3\)
Xét \(VT=n\left(n^2+2018\right)\)
- Nếu \(n⋮3\Rightarrow VT⋮3\Rightarrow\) ptvn
- Nếu \(n\) chia 3 dư 1 hoặc dư 2 \(\Rightarrow n^2\) chia 3 dư 1
Mà \(2018\) chia 3 dư 2 \(\Rightarrow n^2+2018⋮3\Rightarrow VT⋮3\) \(\Rightarrow\) ptvn
Vậy ko tồn tại số tự nhiên n thỏa mãn yêu cầu
Nếu n= 0 thì không thỏa mản.
Nếu 1 ≤ n ≤2017 thì
S(n)=n^2 - 2018n +11 < n2 - 2018n +2017
Mà n2 - 2018n +2017 =(n-1)(n-2017)≤ 0 (loại)
Nếu n=2018 thì S(n) = 11,thỏa mãn.
Nếu n > 2018 thì
n-2018 ≥ 1 ⟹n2 - 2018n ≥ n
⟹ n2 - 2018n +11>n2 - 2018n
⟹S(n) > n (loại).Vậy n=2018