K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2015

25x2-9=0

<=>(5x)2-32=0

<=>(5x-3)(5x+3)=0

<=>5x-3=0 hoặc 5x+3=0

<=>5x=3 hoặc 5x=-3

<=>x=3/5 hoặc x=-3/5

10 tháng 1 2018

Biểu thức  x 2 - 25 x 2 - 10 x + 25 x xác định khi x 0 và x  5.

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8khi x(x + 5) = 0 và x – 5  ≠  0

x(x + 5) = 0 ⇔ x = 0 hoặc x + 5 = 0 ⇔ x = - 5

x = 0 không thỏa mãn điều kiện.

Vậy x = - 5 thì biểu thức  x 2 - 25 x 2 - 10 x + 25 x có giá trị bằng 0.

13 tháng 8 2017

Biểu thức x 2 - 25 x 2 + 10 x + 25 x - 5  xác định khi x ≠ 5 và x  ≠  - 5

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

x - 5 2  = 0 ⇔ x – 5 = 0 ⇔ x= 5

x = 5 không thỏa mãn điều kiện.

Vậy không có giá trị nào của x để biểu thức  x 2 - 25 x 2 + 10 x + 25 x - 5 có giá trị bằng 0.

15 tháng 10 2023

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

15 tháng 10 2023

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

7 tháng 9 2023

\(25x^2-9=0\\ \Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x=3\\5x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)

=>(5x-3)(5x+3)=0

=>5x-3=0 hoặc 5x+3=0

=>x=3/5 hoặc x=-3/5

23 tháng 5 2018

Hướng dẫn giải:

Điều kiện xác định của phân thức: x   ≠   0 ,   x   ≠   5

Ta có Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8

Để P nhận giá trị nguyên thì Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 nguyên. Hay x là ước của 5. Ta có Ư(5) = { 1;-1;5;-5}.

Vì điều kiện xác định của phân thức là x ≠ 0, x≠ 5

Vậy x ∈ { 1;-1;-5} thì giá trị phân thức Cách tìm giá trị của biến x để phân thức có giá trị nguyên cực hay, có đáp | Toán lớp 8 là nguyên

27 tháng 7 2023

Ta có: 

\(P=\dfrac{5x-4y}{5x+4y}\)

\(\Leftrightarrow P^2=\left(\dfrac{5x-4y}{5x+4y}\right)^2\)

\(\Leftrightarrow P^2=\dfrac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}\)

\(\Leftrightarrow P^2=\dfrac{\left(5x\right)^2-2\cdot5x\cdot4y+\left(4y\right)^2}{\left(5x\right)^2+2\cdot5x\cdot4y+\left(4y\right)^2}\)

\(\Leftrightarrow P^2=\dfrac{\left(25x^2+16y^2\right)-40xy}{\left(25x^2+16y^2\right)+40xy}\)

Thay \(25x^2+16y^2=50xy\) vào ta có:

\(P^2=\dfrac{50xy-40xy}{50xy+40xy}=\dfrac{10xy}{90xy}=\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2\)

Mà: \(4y< 5x< 0\)

Nên: \(P=\dfrac{5x-4y}{5x+4y}< 0\)

Vậy: \(P=-\dfrac{1}{3}\)

25x^2+16y^2=50xy

=>25x^2-50xy+16y^2=0

=>25x^2-10xy-40xy+16y^2=0

=>5x(5x-2y)-8y(5x-2y)=0

=>(5x-2y)(5x-8y)=0

=>5x=2y hoặc 5x=8y

5x>4y

=>5x=8y

=>x/8=y/5=k

=>x=8k; y=5k

\(P=\dfrac{5\cdot8k-4\cdot5k}{5\cdot8k+4\cdot5k}=\dfrac{40-20}{40+20}=\dfrac{1}{3}\)

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

5 tháng 1 2017

Biểu thức  x 2 - 25 x 2 - 10 x + 25 x xác định khi x 2 - 10 x + 25 ≠ 0 và x  ≠  0

x 2 - 10 x + 25   ≠  0 ⇔ x - 5 2   ≠  0 ⇔ x  ≠  5

Vậy điều kiện để biểu thức xác định là x  ≠  0 và x  ≠  5

13 tháng 12 2017

Biểu thức  x 2 - 25 x 2 + 10 x + 25 x - 5 xác định khi x 2 + 10 x + 25 ≠ 0 và x - 5  ≠  0

x 2 + 10 x + 25   ≠  0 ⇔ x + 5 2   ≠  0 ⇔ x  ≠  - 5

x – 5  ≠  0 ⇔ x  ≠  5

Vậy điều kiện để biểu thức xác định là x  ≠  5 và x  ≠  - 5.

24 tháng 6 2016

vì trị tuyệt đối của 1 số luôn lớn hơn hoặc bằng 0 nên để

\(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)

thì x-y=0 và y+9/25 =0

* y+9/25 = 0

=> y=-9/25

thay vào x-y=0 ta được

x-(-9/25)=0

=> x=-9/25