Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-25x=0\)
\(\Leftrightarrow x\left(x^2-25\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm5\end{matrix}\right.\)
b) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Leftrightarrow2x^2-3x+6x-9=0\)
\(\Leftrightarrow x\left(2x-3\right)+3\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-3\end{matrix}\right.\)
A) \(\left(x+y\right)^2=\left(x-y\right)^2+4xy=5^2+4.3=37\)
B)
a) \(\left(x+3\right)^2-\left(x-2\right)^2=11\)
\(\Leftrightarrow\)\(x^2+6x+9-\left(x^2-4x+4\right)-11=0\)
\(\Leftrightarrow\)\(x^2+6x+9-x^2+4x-4-11=0\)
\(\Leftrightarrow\)\(10x-6=0\)
\(\Leftrightarrow\)\(10x=6\)
\(\Leftrightarrow\)\(x=\frac{3}{5}\)
Vậy...
b) \(25x^2-9=0\)
\(\Leftrightarrow\)\(\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
Vậy...
a) \(25x^2-2=0\)
\(=>\left(5x\right)^2-\left(\sqrt{2}\right)^2=0\)
\(=>\left(5x-\sqrt{2}\right)\left(5x+\sqrt{2}\right)=0\)
\(=>\hept{\begin{cases}5x-\sqrt{2}=0\\5x+\sqrt{2}=0\end{cases}}\)
\(=>\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
b) \(10x-x^2-25=0\)
\(=>-x^2-5x-5x-25=0\)
\(=>-x\left(x+5\right)-5\left(x+5\right)=0\)
\(=>\left(x+5\right)\left(-x-5\right)=0\)
\(=>\hept{\begin{cases}x+5=0\\-x-5=0\end{cases}}\)
\(=>\hept{\begin{cases}x=-5\\x=-5\end{cases}}\)
a/ \(25x^2-9=0\)
<=> \(\left(5x-3\right)\left(5x+3\right)=0\)
<=> \(\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}5x=3\\5x=-3\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
b/ \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
<=> \(x^2+8x+16-x^2+8x-9=16\)
<=> \(16x+7=16\)
<=> \(16x=9\)
<=> \(x=\frac{9}{16}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=3\\5x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}}\)
Vậy S = {3/5 ; -3/5}
b) \(\left(x+4\right)^2-\left(x+9\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x+4\right)^2-4^2-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+4-4\right)\left(x+4+4\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x+8\right)-\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+8x-x^2-8x+9=0\)
\(\Leftrightarrow9=0\left(vl\right)\)
Vậy S = \(\varnothing\)
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
Tìm x
a) 9(3x-2)=x(2-3x)
b) 25x2-2=0
c) x2-25=6x-9
d) (x+2)2-(x-2)(x+2)=0
e) x3-8=(x-2)3
f) x3+5x2-4x-20=0
a) 9(3x - 2) = x(2 - 3x)
\(\Leftrightarrow\)-9(2 - 3x) = x(2 - 3x)
\(\Leftrightarrow\)-9(2 - 3x) - x(2 - 3x) = 0
\(\Leftrightarrow\)(2 - 3x)(- 9 - x) = 0
\(\Leftrightarrow\)2 - 3x = 0 hay - 9 - x = 0
\(\Leftrightarrow\) 3x = 2 \(\Leftrightarrow\) x = - 9
\(\Leftrightarrow\) x = 2/3
b) 25x2 - 2 = 0
\(\Leftrightarrow\)(5x)2 - (\(\sqrt{2}\))2 = 0
\(\Leftrightarrow\)(5x - \(\sqrt{2}\))(5x + \(\sqrt{2}\)) = 0
\(\Leftrightarrow\)5x - \(\sqrt{2}\)= 0 hay 5x + \(\sqrt{2}\)= 0
\(\Leftrightarrow\)5x = \(\sqrt{2}\) \(\Leftrightarrow\)5x = -\(\sqrt{2}\)
\(\Leftrightarrow\) x = \(\sqrt{2}\)/5 \(\Leftrightarrow\) x = -\(\sqrt{2}\)/5
c) x2 - 25 = 6x - 9
\(\Leftrightarrow\)(x2 - 6x + 9) - 25 = 0
\(\Leftrightarrow\)(x - 3)2 - 52 = 0
\(\Leftrightarrow\)(x - 3 - 5)(x - 3 + 5) = 0
\(\Leftrightarrow\)(x - 7)(x + 2) = 0
\(\Leftrightarrow\)x - 7 = 0 hay x + 2 = 0
\(\Leftrightarrow\)x = 7 \(\Leftrightarrow\)x = -2
d) (x + 2)2 - (x - 2)(x + 2) = 0
\(\Leftrightarrow\)(x + 2)(x + 2) - (x - 2)(x + 2) = 0
\(\Leftrightarrow\)(x + 2)(x + 2 - x + 2) = 0
\(\Leftrightarrow\)(x + 2)4 = 0 (hay 4(x + 2) = 0)
\(\Leftrightarrow\)x + 2 = 0 (vì 4 \(\ne\)0)
\(\Leftrightarrow\)x = -2
e) x3 - 8 = (x - 2)3
\(\Leftrightarrow\)x3 - 23 = (x - 2)3
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) = (x - 2)3
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)3 = 0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4) - (x - 2)(x - 2)2 = 0
\(\Leftrightarrow\)(x - 2)[x2 + 2x + 4 - (x - 2)2] = 0
\(\Leftrightarrow\)(x - 2)[x2 + 2x + 4 - (x2 - 4x + 4)] = 0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4 - x2 + 4x - 4) = 0
\(\Leftrightarrow\)(x - 2)6x = 0 (hay 6x(x - 2) = 0)
\(\Leftrightarrow\)x - 2 = 0 hay x = 0 (vì 6\(\ne\)0)
\(\Leftrightarrow\)x = 2
f) x3 + 5x2 - 4x - 20 = 0
\(\Leftrightarrow\)x2(x + 5) - 4(x + 5) = 0
\(\Leftrightarrow\)(x + 5)(x2 - 4) = 0
\(\Leftrightarrow\)(x + 5)(x - 2)(x + 2) = 0
\(\Leftrightarrow\)x + 5 = 0 hay x - 2 = 0 hay x + 2 = 0
\(\Leftrightarrow\)x = -5 \(\Leftrightarrow\)x = 2 \(\Leftrightarrow\)x = -2
a, sửa đề : \(25x^2+4y^2-10x+12y+10=0\)
\(\Leftrightarrow25x^2-10x+1+4y^2+12y+9=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 1/5 ; y = -3/2
b, \(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+2\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Đẳng thức xảy ra khi x = 2 ; y = -3
\(a)\)
\(25x^2+4y^2-10x+12x+10=0\)
\(\Leftrightarrow\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-10x+1+\left(2y\right)^2+12y+9=0\)
\(\Leftrightarrow[\left(5x\right)^2-2.5x.1-1^2]+[\left(2y\right)^2+2.2y.3+3^{20}]=0\)
\(\Leftrightarrow\left(5x-1\right)^2+\left(2y+3\right)^2=0\)
\(\Leftrightarrow\left(5x-1\right)^2=0\Leftrightarrow5x-1=0\Leftrightarrow x=\frac{1}{5}\)
\(\Leftrightarrow\left(2y+3\right)^2=0\Leftrightarrow2y+3=0\Leftrightarrow2y=-3\Leftrightarrow y=\frac{-3}{2}\)
\(b)\)
\(3x^2+2y^2-12x+12y+30=0\)
\(\Leftrightarrow3x^2-12x+12+2y^2+12y+18=0\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)
Mà: \(3\left(x-2\right)^2\ge0\forall x;2\left(y+3\right)^2\ge0\forall y\)
\(\Leftrightarrow3\left(x-2\right)^2+2\left(y+3\right)^2=0\)chỉ khi: \(x-2=y+3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\y=-3\end{cases}}\)
c) x( 2x - 3 ) - 2( 3 - 2x) =0
\(\Leftrightarrow x\left(2x-3\right)+2\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\2x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=\frac{3}{2}\end{array}\right.\)
d) 25x2 - 36 =0
\(\Leftrightarrow\left(5x\right)^2-6^2=0\)
\(\Leftrightarrow\left(5x-6\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-6=0\\5x+6=0\end{array}\right.\)
\(\Leftrightarrow x=\pm\frac{6}{5}\)
a) \(x\left(2x-3\right)-2\left(3-2x\right)=0\)
=> \(\left(2x-3\right)\left(x+2\right)=0\)
=>\(\left[\begin{array}{nghiempt}2x-3=0\\x+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{2}\\x=-2\end{array}\right.\)
b) \(25x^2-36=0\)
\(\Leftrightarrow\left(5x-6\right)\left(5x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-6=0\\5x+6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{6}{5}\\x=-\frac{6}{5}\end{array}\right.\)
x3-25x=0
=> x(x2-25)=0
=> x(x2-52)=0
=> x(x-5)(x+5)=0
=> x=0 hoặc x-5=0 hoặc x+5=0
=> x=0 hoặc x=5 hoặc x=-5
x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
\(25x^2-9=0\\ \Leftrightarrow\left(5x-3\right)\left(5x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x=3\\5x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=\dfrac{3}{5}\end{matrix}\right.\)
=>(5x-3)(5x+3)=0
=>5x-3=0 hoặc 5x+3=0
=>x=3/5 hoặc x=-3/5