Cho tam giác ABC. Gọi M,N lần lượt là trung điểm của AB và BC.Trên tia đối của tia BA lấy điểm D sao cho BD=BM.Trên tia đối của tia
CB lấy CE=CN.Gọi I là giao điểm của ME và AC.
a)Chứng minh:IM=IE.
b)Chứng minh D,N,I thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình:
Lấy F là trung điểm AC, K là điểm đối xứng với M qua F
Xét \(\Delta AMF\)và \(\Delta CKF\)có
FA=FC
FM=FK
,\(\widehat{AFM}=\widehat{CFK}\)
\(\Rightarrow\Delta AMF=\Delta CKF\left(c.g.c\right)\)
\(\Rightarrow CK=AM=BM\)(vì M là trung điểm AB)
Lại có:\(\widehat{FMA}=\widehat{FKC}\)
\(\Rightarrow\)AM//CK
\(\Rightarrow\widehat{KCM}=\widehat{BMC}\)
\(\Rightarrow\Delta BMC=\Delta KCM\left(c.gc\right)\)
\(\Rightarrow\widehat{CMK}=\widehat{MCB}\)
=>MK//BC
Mặt khác:MK=CB=>BC=2MF(vì F là TĐ MK)
\(\Rightarrow MK=\frac{1}{2}BC=BN+NC=CE\Rightarrow MF=CE\)
Vì MK//BC=>MF//CE=>\(\widehat{MFI}=\widehat{ICE},\widehat{FMI}=\widehat{IEC}\)
\(\Rightarrow\Delta MIF=\Delta EIC\left(g.c.g\right)\)
\(\Rightarrow IM=IE\)
Lên google cũng dc mà vừa nhanh vừa chính xác giống như tui vậy :)
Gọi H là trung điểm của AK
Trong ∆ ADK ta có BH là đường trung bình của ∆ ADK.
⇒ BH // DK (tính chất đường trung bình của tam giác)
Hay BH // MK
Trong ∆ BCH ta có M là trung điểm của BC
MK // BH
⇒ CK = HK
AK = AH + HK = 2HK
Suy ra: AK = 2 KC ( vì HK =KC)
Qua B kẻ BH // AC , cắt DM tại H
Ta có \(\begin{cases}BH\text{//}AK\\AB=BD\end{cases}\) => BH là đường trung bình của tam giác ADK
=> AK=2BH (1)
Dễ dàng chứng minh được \(\Delta MKC=\Delta MBH\left(g.c.g\right)\)
=> BH = CK (2)
Từ (1) và (2) suy ra AK = 2CK