K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

Câu trả lời:

a) Trên tia đối tia MA lấy điểm F sao cho AM = AF (*)

Xét tam giác BFM và tam giác ACM có:

AM = FM (theo *)

Góc BMF = góc AMC (2 góc đối đỉnh)

BM = CM (vì M là trung điểm của BC)

=> Tam giác BFM = tam giác CAM (c.g.c)

=> AC = BF (2 cạnh tương ứng)

Vì AC = AE (gt) nên AE = BF

Ta có: góc F = góc CAM (vì tam giác BFM = tam giác CAM)

Mà 2 góc này ở vị trí so le trong

=> BF // AC (dấu hiệu nhận biết)

=> Góc BAC + góc ABF = 180 độ (2 góc trong cùng phía)

Mà góc BAC + góc DAE = 180 độ 

=> Góc DAE = góc ABF

Xét tam giác ABF và tam giác ADE có:

AB = AD (gt)

Góc DAE = góc ABF (chứng minh trên)

AE = BF (2 cạnh tương ứng)

=> Tam giác ADE = tam giác BAF (c.g.c)

=> AF = DE (2 cạnh tương ứng)

Lại có: AM = AF : 2 => AM = DE : 2   (đpcm)

b) Gọi giao điểm của AM và DE là N

Ta có: tam giác ADE = tam giác BAF (chứng minh trên)

=> Góc D = góc BAF (2 góc tương ứng)

Mà góc BAF + góc DAN = 180 độ - góc BAD = 180 độ - 90 độ = 90 độ

=> Góc D + góc DAN = 90 độ

=> Tam giác ADN vuông tại N

hay AM _|_ DE   (đpcm)

1 tháng 9 2021

cho em xin cái hình

10 tháng 6 2017

A B C N x M

\(\Delta ABC\)cân tại A, \(\widehat{A}=30^o\) => \(\widehat{B}=\widehat{C}=75^o;\widehat{CBx}=90^o-75^o=15^o\)

Vẽ tam giác điều đều BCM (M và A cùng thuộc một nửa mặt phẳng bờ BC) ; \(\widehat{ABM}=75^o-60^o=15^o\)

\(\Delta MAB=\Delta MAC\left(c-c-c\right)\)

\(\Rightarrow\widehat{MAB}=\widehat{MAC}=\frac{30^o}{2}=15^o\)

\(\Delta CNB=\Delta MAB\left(c-g-c\right)\)

\(\Rightarrow\widehat{N}=\widehat{MAB}=15^o;\widehat{BCN}=180^o-\left(15^o+15^o\right)=150^o\)

Vậy \(\widehat{BCN}=150^o\)

18 tháng 2 2020
\(12345+55555\)