Cho đường tròn tâm O bán kính r. Gọi M là điểm bất kì nằm ngoài đường tròn tâm O kẻ cát tuyến bất kì MAB với (0) ( A nằm giữ M và B). Kẻ đường kính BC. Đường MC cắt (0) tại điểm thứ hai là D ( C nằm giữa M và D). Gọi N là giao điểm của AC và BD
a) CMR: BACD là tứ giác nội tiếp và góc AMC = DNC
b) CMR: BC vuông góc MN tại H
c) CMR: DCHN là tứ giác nội tiếp rồi chứng minh: MC .MD + NA .NC = MN2
d) Cho biết góc DNC = 450 Tính diện tích viên phân chắn cung AD theo R
a) B,A,C,D nằm trên (O) => tg ABDC nt
góc NAB=90( góc nt chắn nửa (O))=> NA là đường cao tam giác BMN
Cmtt MD là đường cao tam giác BMN=> góc AMC=DNC ( cùng phụ góc ABD)
b) MD cắt AN tại C => C là trực tâm tam giác BMN => BC vuông góc MN tại H
c)Phần này mình nghĩ bạn làm được: Cm các tg DCHN,MHCA nt; sau đó cm tam giác MHC đồng dạng MDN, tam giác NHC đồng dạng tam giác NAM=> MC.MD=MH.MN;NC.NA=NH.MN
=> NC.NA+MC.MD=MH.MN+NH.MN=MN^2