K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Ta cần chứng minh BĐT phụ sau là : Với x,y>0 thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow y\left(x+y\right)+x\left(x+y\right)\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

dấu = xảy ra <=> x=y

Áp dụng BĐT phụ đó , ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)

dấu = xảy ra <=>a=b=1/2

4 tháng 1 2018

\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}=\frac{1+1+1}{ab+a+b+1}=\frac{3}{ab+1+1}\)

\(=\frac{3}{a\left(1-a\right)+2}=\frac{3}{a-a^2+2}=\frac{3}{-\left(a^2-a+\frac{1}{4}\right)+\frac{9}{4}}=\frac{3}{-\left(a-\frac{1}{2}\right)^2+\frac{9}{4}}\)

\(\ge\frac{3}{\frac{9}{4}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

29 tháng 11 2016

\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{ba+bc}+\frac{c^4}{ca+cb}\)

\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\frac{1}{2}\)

17 tháng 8 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ac}{abc}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(ab+ac+bc\right)\left(a+b+c\right)-9abc\ge0\)

\(\Leftrightarrow a^2b+a^2c+abc+abc+ab^2+b^2c+abc+ac^2+bc^2-9abc\ge0\)

\(\Leftrightarrow a^2b+a^2c+ab^2+b^2c+ac^2+bc^2-6abc\ge0\)

\(\Leftrightarrow\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)+\left(ab^2-2abc+ac^2\right)\ge0\)

\(\Leftrightarrow b\left(a-b\right)^2+c\left(a-c\right)^2+a\left(b-c\right)^2\ge0\)(luôn đúng \(\forall a;b;c>0\))

Vật bđt đã đc chứng minh

17 tháng 8 2017

Cho a,b,c>0 thì dễ thôi :v

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

Khi a=b=c

7 tháng 4 2019

Vì a, b >0 nên áp dụng bất đẳng thức Cô - si , ta có

\(a+b\ge2\sqrt{ab}\)(1)

Mad a,b >0 \(\Rightarrow\frac{1}{a},\frac{1}{b}\)cũng lớn hơn 0 , áp dụng Cô - si ta có

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)(2)

Từ (1) và (2) ta có :

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.\frac{2}{\sqrt{ab}}\)=\(4\)

Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\left(đpcm\right)\)

Cứ có bài toán nào đề bài cho là lớn hơn 0 thì cậu nghĩ ngay tới cô si nhé

7 tháng 4 2019

áp dụng bất đẳng thức cô si ta có 

a2+ b2 \(\ge\)2ab 

\(\Rightarrow a^2+b^2+2ab\ge4ab\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge\frac{4ab}{ab}\)\(\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge4\)\(\Rightarrow\left(a+b\right)\left(\frac{a+b}{ab}\right)\ge4\)

\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)   ( ĐPCM)

28 tháng 7 2019

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\) (do a,b,c >0)

Ta có đpcm

28 tháng 7 2019

may hoc thay nghia a

20 tháng 3 2020

BĐT phụ:\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\left(x-y\right)^2\ge0\left(true\right)\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ( đpcm )

Vậy.......

5 tháng 2 2018

ta cần chứng minh BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với x,y>0( cái này biến đổi tương đương sẽ ra)

Áp dụng ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\left(ĐPCM\right)\)

^_^

5 tháng 4 2018

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

<=>\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

<=>\(\left(a+b\right)^2\ge4ab\)

<=>\(a^2+2ab+b^2-4ab\ge0\)

<=>\(a^2-2ab+b^2\ge0\)

<=>\(\left(a-b\right)^2\ge0\)

Luôn đúng với mọi x,y.

Vậy 1/a+1/b>=4/(a+b). Dấu "=" xảy ra<=>x=y