cho m =2011-10055:(x-2009) /2011*2012*2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2009/2010 < 1
2010/2011 < 1
2011/2012 < 1
2012/2013 < 1
Cộng vế trái của 4 bpt và vế phải của bpt ta có :
2009/2010 + 2010/2011 + 2011/2012 + 2012/2013 < 4 ( đpcm )
10.
Sửa lại đề :Cho \(P=\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2012}{2013}+\dfrac{2013}{2009}\).Chứng tỏ rằng P<5.
\(P=\dfrac{2009}{2010}+\dfrac{2010}{2011}+\dfrac{2012}{2013}+\dfrac{2013}{2009}\)
\(P=\dfrac{2011}{2012}\)
\(\Rightarrow P< 5\)
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
\(A=\frac{2013\cdot2012-2009}{2012\cdot2011+2015}\)
\(A=\frac{2012\cdot2011+4024-2009}{2012\cdot2011+2015}\)
\(A=\frac{2012\cdot2011+2015}{2021\cdot2011+2015}\)
\(A=1\)
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)
=>x-2014=0
hay x=2014