Tìm số tự nhiên a nhỏ nhất có 3 chữ số sao cho chia cho 11 thì dư 5, chia cho 13 thì dư 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a chia cho 11 dư 5 => a = 11x + 5 => a + 6 = 11x + 5 + 6 = 11x + 11 chia hết cho 11
Do 77 chia hết cho 11 => a + 6 + 77 cũng chia hết cho 11 => a + 83 chia hết cho 11 (1)
Lại có a chia 13 dư 8 => a = 13y + 8 => a + 5 = 13y + 8 + 5 = 13y + 13 chia hết cho 13
Do 78 chia hết cho 13 => a + 5 + 78 chia hết cho 13 => a + 83 chia hết cho 13 (2)
Từ 1 và 2 => a + 83 chia hết cho BCNN(11;13) => a + 83 chia hết cho 143
=> a = 143k - 83
Để a nhỏ nhất và a có 3 chữ số => k = 2 => a = 203
a chia 11 dư 5⇔a=11m+5=>a+6=(11m+5)+6=11m|+11=11.(m+1) chia hết cho 11( m thuộc N)
Vì 77 chia hết cho 11 nên (a+6)+77 cũng chia hết cho 11⇔a+83 chia hết cho 11. (1)
a chia 13 dư 8⇔a=13n+8=>a+5=(13n+8)+5=13n+13=13.(n+1) chia hết cho 11 ( n thuộc N)
Vì 78 chia hết cho 13 nên (a+5)+78 cũng chia hết cho 13⇔a+83 chia hết cho 13. (2)
Từ (1) và (2)=>a+83chia hết cho BCNN(11;13)⇔a+83 chhia hết cho 143
=>a=143k-83( k thuộc N*)
Để a nhỏ nhất có 3 chữ số ta chọn k=2. Khi đó a=203
a chia 11 dư 5 \(\Leftrightarrow\) a = 11m + 5 \(\Rightarrow\) a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m \(\in\) N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 \(\Leftrightarrow\) a + 83 chia hết cho 11. (1)
a chia 13 dư 8 \(\Leftrightarrow\) a = 13n + 8 \(\Rightarrow\) a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n \(\in\) N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 \(\Leftrightarrow\) a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) \(\Leftrightarrow\) a + 83 chia hết cho 143
\(\Rightarrow\) a = 143k - 83 (k \(\in\) N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203
Số cần tìm là 203 vì 203 / 13 = 15 (dư 8); 203 / 11 = 18 (dư 5).
Ta có
a: 11 dư 5 => a-5 chia hết cho 11 => a-5+11 chia hết cho 11 => a+6 chia hết cho 11
á:13 dư 8 => a-8 chia hết cho 13 => a-8+13 chia hết cho 13 => a+6 chia hết cho 13
=> a+6 \(\in\)ƯC(11;13)
=> a+6 \(\in\) Ư(143)
=> a+6 = 1;11;13;143
=> a= 5;7;137 (vì a là số tự nhiên )
Vì a là số nhỏ nhất có 3 chữ số
=> a= 137
Vậy số cần tìm là 137
Bấm vào đây:
Tìm số tự nhiên a nhỏ nhất có 3 chữ số sao cho a chia cho
a là số nhỏ nhất có 3 chữ số.
a chia 11 dư 5 nên a + 83
a chia 13 dư 8 nên a + 83
Vậy a + 83 chia hết cho BCNN(11; 13)
BCNN(11; 13) = 143.
Suy ra a + 83 hay a = 143k – 83
Do a là số nhỏ nhất có ba chữ số nên ta chọn k = 2.
Vậy a = 203
chia 11 dư 5 ⇔ a = 11m + 5 ⇒ a + 6 = (11m + 5 )+ 6 = 11m + 11 = 11.(m + 1) chia hết cho 11. (m ∈ N)
Vì 77 chia hết cho 11 nên (a + 6) + 77 cũng chia hết cho 11 ⇔ a + 83 chia hết cho 11. (1)
a chia 13 dư 8 ⇔ a = 13n + 8 ⇒ a + 5 = (13n + 8) + 5 = 13n + 13 = 13.(n + 1) chia hết cho 11. (n ∈ N)
Vì 78 chia hết cho 13 nên (a + 5) + 78 cũng chia hết cho 13 ⇔ a + 83 chia hết cho 13. (2)
Từ (1) và (2) suy ra a + 83 chia hết cho BCNN(11; 13) ⇔ a + 83 chia hết cho 143 ⇒ a = 143k - 83 (k ∈ N*)
Để a nhỏ nhất có 3 chữ số ta chọn k = 2. Khi đó a = 203