K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

a, xét tam giác AHC và tam giác AHC có: AH chung

AB = AC do tam giác ABC cân tại A (gt)

góc AHB = góc AHC = 90 

=> tam giác AHC = tam giác AHC (ch-cgv)

b,  tam giác AHC = tam giác AHC (câu a)

=> CH = BH (đn)

xét tma giác BHN và tam giác CHM có: góc MHC = góc NHB (đối đỉnh)

HN = HM (gt)

=> tam giác BHN = tam giác CHM (c-g-c)

=> góc BNH = góc HMC (đn) mà 2 góc này slt

=> BN // AC (đl)

14 tháng 2 2018

Dễ mà :))

A B C D K M I H 1 1 1

Kẻ  \(MI\perp AD\)và \(MK\perp BH\)

Ta có : \(\widehat{B_1}=\widehat{A_1}\)( cùng phụ với \(\widehat{D_1}\))

\(\Delta BKM=\Delta AIM\left(ch-gn\right)\)

\(\Rightarrow\)\(MK=MI\)

Nên M thuộc tia phân giác của góc BHD hay HM là tia phân giác của góc BHD

Vậy HM là tia phân giác của góc BHD ( ĐPCM )

26 tháng 5 2020

Thanks bạn nhé!! Tặng bạn 1 tk, kết bạn nha =))

a: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến

nên AM=BM=CM=BC/2

Xét ΔABM có MA=MB

nên ΔABM cân tại M

mà \(\widehat{AMB}=90^0\)

nên ΔAMB vuông cân tại M

21 tháng 1 2016

 

21 tháng 1 2016

cảm ơn nha nhưng bạn có thể làm bài giải được ko