Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ mà :))
Kẻ \(MI\perp AD\)và \(MK\perp BH\)
Ta có : \(\widehat{B_1}=\widehat{A_1}\)( cùng phụ với \(\widehat{D_1}\))
\(\Delta BKM=\Delta AIM\left(ch-gn\right)\)
\(\Rightarrow\)\(MK=MI\)
Nên M thuộc tia phân giác của góc BHD hay HM là tia phân giác của góc BHD
Vậy HM là tia phân giác của góc BHD ( ĐPCM )
a: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(MA=MC=MB=\dfrac{BC}{2}\)
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
b: Xét ΔABC có
M là trung điểm của CB
MH//AB
Do đó: H là trung điểm của AC
Xét tứ giác AMCD có
H là trung điểm chung của AC và MD
nên AMCD là hình bình hành
Hình bình hành AMCD có MA=MC
nên AMCD là hình thoi
c: Để AMCD là hình vuông thì \(\widehat{MCD}=90^0\)
AMCD là hình thoi
=>AC là phân giác của \(\widehat{MAD}\) và CA là phân giác của \(\widehat{MCD}\)
=>\(\widehat{MCA}=\dfrac{1}{2}\cdot\widehat{BAC}=45^0\)
=>\(\widehat{ACB}=45^0\)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b: Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình
=>DE//BC và DE=1/2BC
=>DE//MC và DE=MC
Xét tứ giác DMCE có
DE//MC
DE=MC
Do đó: DMCE là hình bình hành
c: ΔHAC vuông tại H có HE là trung tuyến
nên \(HE=\dfrac{1}{2}AC\)
mà \(MD=\dfrac{1}{2}AC\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
nên DHME là hình thang
mà HE=MD
nên DHME là hình thang cân
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
EA=EH
DA=DH
Do đó: ED là đường trung trực của AH
1: Xét tứ giác ABNC có
M là trung điểm chung của AN và BC
nên ABNC là hình bình hành
Hình bình hành ABNC có \(\widehat{BAC}=90^0\)
nên ABNC là hình chữ nhật
2:
a: Xét ΔABC có
M là trung điểm của BC
MH//AB
Do đó: H là trung điểm của AC
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)
Xét tứ giác AMCE có
H là trung điểm chung của AC và ME
nên AMCE là hình bình hành
Hình bình hành AMCE có MA=MC
nên AMCE là hình thoi
=>\(C_{AMCE}=4\cdot AM=4\cdot2,5=10\left(cm\right)\)
3: Xét ΔNAB có
M,K lần lượt là trung điểm của NA,NB
=>MK là đường trung bình của ΔNAB
=>\(MK=\dfrac{AB}{2}\)
AMCE là hình thoi
=>AE//CM và AE=CM
AE//CM
\(M\in BC\)
Do đó: AE//BM
AE=CM
CM=BM
Do đó: AE=BM
Xét tứ giác ABME có
AE//MB
AE=MB
Do đó: ABME là hình bình hành
=>ME=AB
mà MK=1/2AB
nên \(\dfrac{ME}{MK}=1:\dfrac{1}{2}=2\)
=>ME=2MK
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a) Xét \(\Delta\) DHM và \(\Delta\) DMC:
\(\widehat{MDH}chung.\)
\(\widehat{DHM}=\widehat{DMC}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(g-g\right).\)
b) Xét \(\Delta\) ABC cân tại A: AM là đường cao (gt).
\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) M là trung điểm của BC.
Ta có: \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(cmt\right).\)
\(\Rightarrow\dfrac{DH}{DM}=\dfrac{HM}{MC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow DH.MC=DM.HM.\)
Mà \(MC=BM\) (M là trung điểm của BC); \(DM=AD\) (D là trung điểm của AM).
\(\Rightarrow DH.BM=AD.HM.\)
c) Ta có: \(\widehat{HDM}+\widehat{DMH}=90^o\) (Tam giác DHM vuông tại H).
\(\widehat{HMC}+\widehat{DMH}=90^o\left(=\widehat{DMC}\right).\)
\(\Rightarrow\) \(\widehat{HDM}=\widehat{HMC}.\)
Mà \(\widehat{ADH}+\widehat{HDM}=180^o;\widehat{BMH}+\widehat{HMC}=180^o.\\ \Rightarrow\widehat{ADH}=\widehat{BMH}.\)
Xét \(\Delta\) ADH và \(\Delta\) BMH:
\(\widehat{ADH}=\widehat{BMH}\left(cmt\right).\\ \dfrac{AD}{BM}=\dfrac{DH}{MH}\left(DH.BM=AD.HM\right).\)
\(\Rightarrow\Delta\) ADH \(\sim\Delta\) BMH \(\left(g-g\right).\)
\(\Rightarrow\widehat{DAH}=\widehat{MBH}\) (2 góc tương ứng).
Xét \(\Delta\) AMN và \(\Delta\) BHN:
\(\widehat{N}chung.\)
\(\widehat{MAN}=\widehat{HBN}\left(\widehat{DAH}=\widehat{MBH}\right).\)
\(\Rightarrow\Delta\) AMN \(\sim\) \(\Delta\) BHN \(\left(g-g\right).\)
\(\Rightarrow\widehat{AMN}=\widehat{BHN}=90^o\) (2 góc tương ứng).
Xét \(\Delta\) ABN:
AM là đường cao \(\left(AM\perp BC\right).\)
BH là đường cao \(\left(\widehat{BHN}=90^o\right).\)
AM cắt BH tại E (gt).
\(\Rightarrow\) E là trực tâm.
\(\Rightarrow\) EN là đường cao.
\(\Rightarrow EN\perp AB.\)
a: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BM=CM=BC/2
Xét ΔABM có MA=MB
nên ΔABM cân tại M
mà \(\widehat{AMB}=90^0\)
nên ΔAMB vuông cân tại M