Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\)
=\(1-\frac{1}{2011}\)
=\(\frac{2010}{2011}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\)
\(=\frac{1\cdot2}{2\cdot1\cdot3}+\frac{1\cdot2}{2\cdot3\cdot5}+\frac{1\cdot2}{2\cdot5\cdot7}+...+\frac{1\cdot2}{2\cdot2009\cdot2011}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{2011}\right)\)= .......
Mình không chắc là đúng đâu nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2009.2011}\)
=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2009}-\frac{1}{2011}\)
=\(1-\frac{1}{2011}\)
=\(\frac{2010}{2011}\)
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\)
\(=\frac{1\cdot2}{2\cdot1\cdot3}+\frac{1\cdot2}{2\cdot3\cdot5}+\frac{1\cdot2}{2\cdot5\cdot7}+...+\frac{1\cdot2}{2\cdot2009\cdot2011}\)
\(=\frac{1}{2}\cdot\left(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2009\cdot2011}\right)\)
\(=\frac{1}{2}\cdot\left(\frac{1}{1}-\frac{1}{2011}\right)\)= .......
Mình không chắc là đúng đâu nha