K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

cho a = 4; b = 9; c = 484

1 tháng 1 2020

bài này hay đấy

Áp dụng BĐT Cô-si cho 3 số không âm, ta có :

\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\ge3\sqrt[3]{\frac{1+\sqrt{a}}{1+\sqrt{b}}.\frac{1+\sqrt{b}}{1+\sqrt{c}}.\frac{1+\sqrt{c}}{1+\sqrt{a}}}=3\)

Chứng minh \(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+a+b+c\)( 1 )

đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)( x,y,z \(\ge\)0 )

do a,b,c là số nguyên 

Nếu a = b = c = 0 thì x = y = z = 0 nên ( 1 ) đúng

Nếu a,b,c không đồng thời bằng 0 \(\Rightarrow\)x+ y + z \(\ge\)1

Ta có : VT ( 1 ) 

\(\Leftrightarrow\frac{\left(1+x\right)\left(1+y\right)-\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)\left(1+z\right)-\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)\left(1+x\right)-\left(1+z\right)x}{1+z}\)

\(=3+x+y+z-\left[\frac{\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)x}{1+x}\right]\)

\(\le3+x+y+z-\frac{\left(1+x\right)y+\left(1+y\right)z+\left(1+z\right)x}{1+x+y+z}=3+x+y+z-\frac{x+y+z+xy+yz+xz}{1+x+y+z}\)

\(=3+\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le3+x^2+y^2+z^2\)

Cần chứng minh : \(\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

Mà \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge1.\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

suy ra đpcm

NV
28 tháng 3 2023

a.

Bình phương 2 vế, BĐT cần chứng minh trở thành:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge6\)

Ta có:

\(\sqrt{\left(a^2+1\right)\left(1+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=a+b\)

Tương tự cộng lại:

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)}+\sqrt{\left(b^2+1\right)\left(c^2+1\right)}+\sqrt{\left(c^2+1\right)\left(a^2+1\right)}\ge2\left(a+b+c\right)=6\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

b.

\(\sum\dfrac{a+1}{a^2+2a+3}=\sum\dfrac{a+1}{a^2+1+2a+2}\le\sum\dfrac{a+1}{4a+2}\)

Nên ta chỉ cần chứng minh:

\(\sum\dfrac{a+1}{4a+2}\le1\Leftrightarrow\sum\dfrac{4a+4}{4a+2}\le4\)

\(\Leftrightarrow\sum\dfrac{1}{2a+1}\ge1\)

Đúng đo: \(\dfrac{1}{2a+1}+\dfrac{1}{2b+1}+\dfrac{1}{2c+1}\ge\dfrac{9}{2\left(a+b+c\right)+3}=1\)

15 tháng 6 2020

Giúp với,, TT

17 tháng 6 2020

Theo bất đẳng thức Cauchy-Schwarz, ta được:

\(\left(\Sigma_{cyc}\frac{a}{\sqrt{a+b}}\right)^2=\)\(\left(\Sigma_{cyc}\sqrt{a\left(5a+b+9c\right)}.\sqrt{\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}}\right)^2\)

\(\le\left(\Sigma_{cyc}a\left(5a+b+9c\right)\right)\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\)

\(=5\left(a+b+c\right)^2\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\)

Đến đây, ta cần chứng minh \(5\left(a+b+c\right)^2\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\le\frac{25}{16}\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\right)\le\frac{5}{16}\)

Thật vậy, ta có: \(\frac{5}{16}-\Sigma_{cyc}\frac{a}{\left(a+b\right)\left(5a+b+9c\right)}\)

\(\Leftrightarrow\frac{\sum_{cyc}ab(a+b)(a+9b)(a-3b)^2+243\sum_{cyc}a^3b^2c+835\sum_{cyc}a^3bc^2+232\sum_{cyc}a^4bc+1230a^2b^2c^2}{16(a+b)(b+c) (c+a)\prod_{cyc}(5a+b+9c)}\ge 0\) (đúng)

(Minh gõ bằng Latex, bạn chịu khó vô trang cá nhân của mình nhé, ngày 17/6 nha)

Đẳng thức xảy ra khi \(a=3b;c=0\)